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Rhizobium etli CFN42 proteome–transcriptome mixed data of exponential
growth and nitrogen-fixing bacteroids, as well as Sinorhizobium meliloti
1021 transcriptome data of growth and nitrogen-fixing bacteroids, were
integrated into transcriptional regulatory networks (TRNs). The one-step
construction network consisted of a matrix-clustering analysis of matrices of
the gene profile and all matrices of the transcription factors (TFs) of their genome.
The networks were constructed with the prediction of regulatory network
application of the RhizoBindingSites database (http://rhizobindingsites.ccg.
unam.mx/). The deduced free-living Rhizobium etli network contained
1,146 genes, including 380 TFs and 12 sigma factors. In addition, the bacteroid
R. etli CFN42 network contained 884 genes, where 364 were TFs, and 12 were
sigma factors, whereas the deduced free-living Sinorhizobium meliloti
1021 network contained 643 genes, where 259 were TFs and seven were
sigma factors, and the bacteroid Sinorhizobium meliloti 1021 network
contained 357 genes, where 210 were TFs and six were sigma factors. The
similarity of these deduced condition-dependent networks and the biological
E. coli and B. subtilis independent condition networks segregates from the
random Erdös–Rényi networks. Deduced networks showed a low average
clustering coefficient. They were not scale-free, showing a gradually
diminishing hierarchy of TFs in contrast to the hierarchy role of the sigma
factor rpoD in the E. coli K12 network. For rhizobia networks, partitioning the
genome in the chromosome, chromids, and plasmids, where essential genes are
distributed, and the symbiotic ability that is mostly coded in plasmids, may alter
the structure of these deduced condition-dependent networks. It provides
potential TF gen–target relationship data for constructing regulons, which are
the basic units of a TRN.
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Introduction

Rhizobium etli CFN42, a free-living soil bacterium, is an
alphaproteobacterium able to establish a symbiotic relationship
with leguminous plants (Andrews and Andrews, 2017; Lardi and
Pessi, 2018; Dicenzo et al., 2019). R. etli CFN42 lives in a wide variety
of environmental conditions; in the rhizosphere, the bacterial
community competes for nutrients from the soil and exudates of
the tropical plant Phaseolus vulgaris; this may be a limited nutrient
condition. In symbiosis, a completely different living condition is
experienced for rhizobia, which commences with a chemical
communication and signaling between rhizobia and the plant;
rhizobia is allocated inside the plant cells of nodules, and the
nodules are elicited by the bacterium on the root from the
leguminous plant, where rhizobia is differentiated to a bacteroid
giving rise to the organelle symbiosome (Mylona et al., 1995; Van
Rhijn and Vanderleyden, 1995; Rascio and La Rocca, 2013; Dicenzo
et al., 2019). This pleomorphic bacteroid converts the atmospheric
di-nitrogen (N2) to ammonium, called symbiotic nitrogen fixation
(SNF); the ammonium is exported to the plant cells in an exchange
of carbon compounds supplied by the plant cells from
photosynthesis, and the bacteroid metabolizes this photosynthate
to sustain the nitrogen fixation (Rascio and La Rocca, 2013). The
symbiont Rhizobium, as an inoculant of leguminous plants, is
capable of substituting the use of chemical fertilizers for the
production of grains for human consumption and pastures for
animal breeding, which is a cheaper alternative to industrial
nitrogen fertilizers that pollute the environment, having a
significant impact on ecosystems and in the community (Oldroyd
et al., 2011; Ferguson et al., 2019).

Efficient survival of rhizobia in different living conditions involves
coordinatedmetabolic responses through transcriptional regulation of
genes and appropriate protein quantity of proteins (Barabási and
Oltvai, 2004; Escorcia-Rodríguez et al., 2020). A TRN comprises
different components, including global transcriptional regulators,
modules containing regulons and transcriptional regulators (TFs),
genes involved in metabolic processes, basal machinery genes, and
intermodular genes. These modules respond to environmental cues
and integrate their responses at the promoter level (Freyre-González
et al., 2012; Ibarra-Arellano et al., 2016; Escorcia-Rodríguez et al.,
2021; Freyre-González et al., 2022).

TFs bind to a short, specific nucleotide sequence called a motif
located in the promoter sequence of the target genes; then,
identifying the motifs becomes a crucial task for a TRN. The
ChIP-seq experimental method allows the identification of motifs
at the genomic level. However, it is an expensive technique, and once
the motif is determined, the next challenging step is to identify the
TF (Cuesta-Astroz et al., 2021). Alternatively, bioinformatic
methods become relevant to address these questions at the
genomic level, for example, identifying the SNF regulons.

To construct a TRN of the SNF, knowledge of transcriptional
regulation at the genomic level is needed for genetic modifications in
symbiotic species to enhance nitrogen fixation of rhizobia
distributed in a wide variety of geographic conditions.

Great progress was made on the O2-dependent regulation of the
SNF by extending known motifs with bioinformatic methods to
establish the NifA-RpoN regulon of nitrogen fixation in the
alphaproteobacteria group, and the deduced matrices from the

motifs of the TFs inferred with a highly strict p-value were used
in RegPredict site to define the operons (Novichkov et al., 2010).
This search yielded 95 operons that potentially contain NifA-
binding sites, including 280 genes (Tsoy et al., 2016). In addition,
the NifA-RpoN regulon of R. etli CFN42 was determined by
experimental and bioinformatic methods, and it was found to
consist of 78 genes (Salazar et al., 2010). Comparing the number
of genes from both studies, it appears that the study of the NifA
regulon in alphaproteobacteria is highly conservative. This suggests
that considerable data regarding the in silico deduced regulon may
have been eliminated.

A computational analysis based on protein–protein interactions
of Sinorhizobium meliloti with its host plants proposed the symbiosis
“interactome,” which was composed of 440 proteins involved in
1,041 unique interactions (Rodriguez-Llorente et al., 2009).

In addition, proteomic studies on symbiosis have been reported
(Larrainzar and Wienkoop, 2017; Lardi and Pessi, 2018; Khatabi
et al., 2019). Although it contains protein profiles of symbiotic and
free-living organisms, including transcription factors (TFs), it is
necessary to know the TF gene–targets to create genetic circuitry
with these profiles.

TFs gene–targets with computationally predicted motif were
used to construct TRNs of R. etli CFN42 protein profiles after 6 h of
growth in a minimal medium and 18 days post-inoculation. A
clustered-TF network was constructed using a method that
included an initial network followed by matrix-clustering analysis
and clustered-TF gene–targets. However, in the R. etli
CFN42 clustered-TF gene–targets for the second network, there
was a significant reduction of genes compared to the first network,
probably because a significant number of TFs involved in regulating
the genes of the profile were absent. Lowmodularity was detected for
these networks, probably affected by a low number of genes and a
low number of inter-modular genes, particularly in the bacteroid
profile (Taboada-Castro et al., 2022).

In this study, 1.7 and 3.59more genes were included to address the
diminishing of genes. The method to construct a network consisted of
a matrix-scan analysis of the matrices of the gene profile and matrices
of all TFs of the corresponding genome. Properties of the deduced R.
etli CFN42 and S. meliloti 1021 networks, together with the
experimentally constructed Escherichia coli, Bacillus subtilis, and
their corresponding Erdös–Rényi random networks, were
contrasted (Escorcia-Rodríguez et al., 2020).

Material and methods

Design of the regulatory network

In contrast to our last method for constructing the TRN, which
consisted of three steps (Taboada-Castro et al., 2022), in this report,
a one-step method was assayed, which consisted of an analysis of
matrices with the matrix-clustering method of the genes from each
profile together with all matrices of TFs available of the respective
genome to avoid the drastic diminishing of genes during the
construction of the network (see above). Matrices of the
significative genes from the protein and transcriptome profiles of
R. etli CFN42 grown in minimal medium (MM) at 6 h and of
bacteroid isolated from nodules at 18 days post-inoculation of the
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bean plant Phaseolus vulgaris (matrices available under request) as
well as the matrices of all TFs of the respective genome were taken
(matrices from TFs are available in the section “matrix-clustering” of
the respective species) (Salazar et al., 2010; Taboada-Castro et al.,
2022). These data were the input for the matrix-clustering program
available on the RSAT web page (http://embnet.ccg.unam.mx/rsat/
matrix-clustering_form.cgi). This program constructs clusters based
on similarity in hierarchical dendrograms using the HCLUST
algorithm (Castro-Mondragon et al., 2017). There is an output
file “clusters_motif_names.tab” containing the clusters in a list
(i.e., cluster_3 RHE_RS06555_m1, RHE_RS06555_m2, RHE_
RS03090_m3, RHE_RS03090_m1, and RHE_RS03090_m2).
Notably, genes RHE_RS06555 and RHE_RS03090 appeared
repeatedly in this cluster (data not shown). To avoid this
redundancy of genes, unique genes per cluster were extracted
from the clusters_motif_names.tab output file, and clusters with
at least two different genes were extracted; subsequently, the TF or
TFs were identified per cluster (Supplementary Tables 1, 2, a and b).
In this step, all the genes with a similar motif shared with a motif of a
TF were retained, augmenting the possibilities of predicting TF
gene–targets with motif consensus conserved from their respective
ortholog genes and eliminating probably false-positive data. For the
construction of a network in the application “Prediction of
regulatory networks” from the RhizoBindingSites database
located in the windows “motif information” of the corresponding
species, that is, for R. etli CFN42 networks (http://rhizobindingsites.
ccg.unam.mx/Motif.jsp?v=v1&s=1), all unique TFs from the matrix-
clustering were copy-pasted in the left box, and a mix of all unique
targets and unique TFs in the right box of the application, for
example, for the R. etli CFN42 MM network (see Supplementary
Table 1, columns E and I), the “auto” option was selected and run.
The program looks for all the targets in the 1e-06 to lower p-value
data with each TF (highest stringency data). All the genes that were
targeted by a TF or TFs were separated from the list, and the rest of
the genes were the input for a new search in the 1e–05 p-value data
with all the TFs (medium stringency data), and again, all targeted
genes were separated from the list. Finally, the remaining genes were
the input for a new search for targets in the 1e–04 p-value data (low-
stringency data). These networks were constructed with the lowest
p-value possible TF gene–target relationships and, consequently,
with the highest stringency, called “clustered-TF networks”
(Supplementary Tables 3–6, a).

For the construction of Sinorhizobium meliloti 1021 clustered-
TF free-living and bacteroid networks, an identical method was
applied to the matrices of significative genes from the transcriptome
data of growth in a complete tryptone yeast extract medium between
0.5 and 0.7 OD600 and bacteroid detached from the roots of the
alfalfa host plant Medicago truncatula at 33–35 days of symbiosis
from S. meliloti 1021, respectively (Supplementary Tables 5, 6)
(Barnett et al., 2004).

Gene co-expression network

The gene co-expression network was built using the WGCNA
algorithm using a collection of 40 gene expression samples from the
Collections of Microarrays for Bacterial Organisms (COLOMBOS)
(Langfelder and Horvath, 2008; Moretto et al., 2016). The scale-free

topological features of biological networks were detected using
pickSoftThreshold with a power (β) of nine.

Subsequently, an adjacency matrix was created by utilizing the
signal correlation matrix and the pairwise biweight midcorrelation
coefficients between each gene, where nodes with negative
correlations are regarded as disconnected. This correlation
approach was selected as it outperforms the Spearman and
Pearson correlation methods (Bakhtiarizadeh et al., 2018). Next,
a topological overlap matrix (TOM) was created using the adjacency
matrix. A higher TOM value made it possible to identify the gene
modules for each pair of strongly interconnected genes.

Finally, the average linkage hierarchical clustering technique
(flashClust function) was used to group the genes into modules with
similar expression patterns. The branches of the resultant dendrogram,
which produces the gene modules, were then cut using the
cutreeDynamic function. The distance matrix 1-TOM, whose
minimum module size was 20, was employed to achieve this.
Consequently, the modules exhibiting a strong correlation between
their eigengenes were combined using the mergeCloseModules
function, with a minimum height of 0.25. Each module was assigned
a color and uncorrelated genes were assigned gray (Horvath, 2011).

Properties of networks

We computed several global structural properties for regulatory
networks, namely, regulators (kout > 0), self-regulations, maximum
out-connectivity, giant component size, network density, feedforward
circuits, complex feedforward circuits, 3-feedback loops, average shortest
path length, network diameter, average clustering coefficient, adjusted
coefficient of determination (R2

adj) ofP(k), andR2
adj ofC(k). Regulators,

self-regulations, maximum out-connectivity, and giant component size
were normalized by the number of nodes in the network. The density was
included as the product of the network density and the fraction of
regulators. Network diameter was normalized (number of nodes, 2) (as if
no shortcuts would exist). The 3-feedback loops, feedforward loops, and
complex feedforward loops were normalized by the number of potential
motifs in the network, defined as

n!
n − r( )! ·

TFn

n
( )TFm

,

where n is the number of nodes in the network, r is the number of
nodes in the motif (r " 3), TFn is the number of TFs in the network,
and TFm is the number of TFs required for each motif type
(TFm " 3 for 3-feedback loops, and TFm " 2 for feedforward and
complex feedforward loops). We exclusively scaled the values of
each property vector across networks to the range between 0 and 1.
Then, we clustered networks and properties using Ward’s method.
Furthermore, we used the pairwise Pearson correlation method to
analyze the network property profiles and clustered the networks
according to the Euclidean distance using Ward’s method.

Reconstruction of networks’ hierarchy

We classified each network edge (a, b) as “descendent” if
kouta > koutb (where koutn is the out-connectivity of node n);

Frontiers in Bioinformatics frontiersin.org03

Taboada-Castro et al. 10.3389/fbinf.2024.1419274

http://embnet.ccg.unam.mx/rsat/matrix-clustering_form.cgi
http://embnet.ccg.unam.mx/rsat/matrix-clustering_form.cgi
http://rhizobindingsites.ccg.unam.mx/Motif.jsp?v=v1&s=1
http://rhizobindingsites.ccg.unam.mx/Motif.jsp?v=v1&s=1
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1419274


otherwise, it was classified as “ascendant.” Then, we removed all the
“ascendant” edges from the network. This step removed the
feedback present in the network, transforming it into a directed
acyclic graph. Then, we applied a modified topological sorting
algorithm that returned the list of layers composing the
hierarchy, where each node in a layer can only regulate nodes in
lower layers. As the number of “ascendant” edges is low (<5% on
average), our strategy maintains the global structure of the network
to reveal the hierarchy. Additionally, no nodes are removed in the
process, and “ascendant” edges can be added back to the hierarchy to
indicate the feedback among layers.

Results and discussion

Matrices of 1,647 unique genes, including matrices of 380 TFs
genes, were analyzed using the RSAT matrix-clustering method for
the MM R etli CFN42 TRN (Castro-Mondragon et al., 2017). One
thousand two hundred twelve clustered genes with at least 1 TF
included in the cluster, called “clustered-TF-genes,” were selected to
construct the TRN. Five hundred twenty gene clusters were formed
(Supplementary Table 1 a); from this, 1,146 genes, including 380 TFs
and 12 sigma factors, were integrated into the network
(Supplementary Table 3 a and c column AH). For the TRN R.
etli CFN42 bacteroid profile, matrices of 1,241 genes, including the
TFs, were analyzed with the matrix-clustering method. Only
939 clustered-TF genes were grouped into 467 clusters
(Supplementary Table 1 b). From this, 884 unique genes
containing 364 TFs and 12 sigma factors were integrated into the
network (Supplementary Table 4 a and c column AG) (see Material
and Methods). Notably, selected clusters for these networks were
composed of at least two different genes, as clusters are frequently
formed with matrices of the same gene, and each gene may have one
to five matrices deduced with the RSAT footprinting discovery
algorithm (Hertz et al., 1990; Defrance et al., 2008).

For the S. meliloti 1021 free-living network, matrix-clustering
analysis of matrices from 681 genes, including 260 TFs, resulted in
296 clusters (Supplementary Table 2 a). For the S. meliloti
1021 bacteroid TRN, matrices of 372 genes, including 210 TFs,
were analyzed with the matrix-clustering method, which resulted in
the formation of 181 clusters (Supplementary Table 2 b); these data
were used to construct the networks as mentioned above. For free-
living clustered-TF S. meliloti 1021 TRN, 643 genes, including
259 TFs and eight sigma factor, were integrated (Supplementary
Table 5 a and c column AG). Regarding the clustered-TF bacteroid
TRN of S. meliloti 1021, 357 genes, including 210 TFs and six sigma
factors, were integrated (Supplementary Table 6 a and c columnAL).
In this report, more significant genes and sigma factors were
integrated into the R. etli CFN42 networks than those in our last
report, see above, similar to the S. meliloti 1021 networks (Taboada-
Castro et al., 2022).

Strict level of data distribution in networks

One of the challenges in bioinformatic studies is the elimination
of false-positive data; one strategy to diminish false-positive data in
inferred networks was by lowering TF gene–target relationships in

the p-value range of e-04 because a low homology between the motif
and the sequence of the matrix in this threshold is accepted. It is
desirable that TF gene–target relationships be in the range of
p-values of e-05 and e-06 and lower, which are with medium and
strict homology data, respectively. The MM R. etli CFN42 network
has only 0.41% of data in the p-value range e-04 from 9,017 TF
gene–targets deduced (Supplementary Table 3 b). Whereas for the
bacteroid network, 0.04% of 6,913 TF gene–targets were considered
(Supplementary Table 4 b). Moreover, for the free-living S. meliloti
1021 network, 0.33% of data in the p-value range of e-04 of a
network with 4,209 TF gene–targets (Supplementary Table 5 b) and
0.87% of 2,538 TF gene–targets were deduced in the bacteroid
network (Supplementary Table 6 b). All these networks are
composed of approximately 60% of TF gene–target relationships
in the p-value of e-06, except for the bacteroid S. meliloti network
with 56%. These data showed that all these networks were inferred
with a quality TF gene–target relationship distribution. However,
the occurrence by a chance of motif without a role in the
transcription activation is not discarded (Minch et al., 2015).

Hierarchy of networks and the most
regulated genes

The hierarchy of the networks is related to the giant component
of the networks; a component is a group of nodes connected by at
least one path; networks may have more than one component, and
the giant component is the largest component of the network, where
the global TFs play a determinant role, that is, in the E coli
K12 network 511145_v2022_sRDB22_eStrong, the sigma factor
rpoD has regulatory connections with 1,387 genes; the immediate
inferior is crp with 547 targets, rpoS with 286, fis with 239, IHF with
233, hns with 200, fnr with 196, arcA with 180, rpoH with 142, rpoE
with 115, and the rest of the regulators of transcription with less than
100 targets, and the more regulated genes were csgG with 17, csgF 17,
csgD 17, gadX 15, gadA 12, flhD 12, flhC 12, and yhiD 11 times
regulated (Escorcia-Rodríguez et al., 2020). A hierarchy analysis
with a network constructed with the breadth-first layout of
Cytoscape was carried out. This algorithm defines the gene RHE_
RS17050 as a node root, visiting all the next nodes directly from the
node root, generating the first level, and so on, until there are no
more nodes; this represents the total number of connections (Akram
and Dagdeviren, 2013). For the MM R. etli CFN42 network
hierarchy, RHE_RS17050 potentially has 49 connections, with
most of them as regulators, RHE_RS00185 with 47, RHE_
RS20580, which is the RNA polymerase factor sigma-32, with 44,
and RHE_RS05945 with 43 connections, identified as a LuxR family
transcriptional regulator (Supplementary Table 3 c). The five most
regulated genes were RHE_RS09360, RHE_RS09355, RHE_
RS24105, RHE_RS00340, and RHE_RS01550; those are between
30 and 25 times more regulated (Supplementary Table 3 d). For the
bacteroid R. etli CFN42 network, the hierarchy based on the node
root RHE_RS06405, for the RHE_RS06405, RHE_RS00185, RHE_
RS00415, RHE_RS17835, RHE_RS02315, and RHE_RS20580 TFs, is
between 45 and 28 times more connected (Supplementary Table 4
c). The five most regulated genes were RHE_RS00340, RHE_
RS06680, RHE_RS22960, RHE_RS17050, and RHE_RS16205 in
the range of 28–19 times (Supplementary Table 4 d).
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In the free-living S. meliloti 1021 network, based on the node
root SMc02523, the most connected TFs were SMc02523,
SMc02470, SMc01593, SM_b21641, SMc02172, SMc00785, and
SMc03873, identified as sigma-32 rpoH2, with ranges from 28 to
19 connections (Supplementary Table 5 c), and the five most
regulated genes were SM_b20129, SM_b21080, SMc04134,
SMc02172, and SMa2215 genes, with gradually diminishing times
in the range of 23 to 19 (Supplementary Table 5 d). Meanwhile, in
the bacteroid S. meliloti 1021 network, based on the node root
SMc02172, the most connected TF, SMc02172, SMa1207 identified
as a Crp family transcriptional regulator, SMc02553, SMc00241,
SM_b21222, SMa0498, and SMc04134 are connected between
20 and 15 times (Supplementary Table 6 c). Moreover, the five
most regulated genes were SMc02172, SMa2215, SMa0830, the
nitrogenase nifE gene for the synthesis of the molybdenum
cofactor of the nitrogenase enzymatic complex, SMa1505, and
SMc04348, which are regulated in the range of 16 to 12 times
(Supplementary Table 6 d).

A comparison of the E. coliK12 genomic condition-independent
network and partial networks of a dependent condition from these
symbiotic species showed they have one giant component (see
below). However, the hierarchy is different between them; E. coli
K12 has a hierarchy by the rpoD sigma factor, whereas for these
symbiotic species, the hierarchy diminishes gradually.
Consequently, the properties of the networks were different (see
below). The times a gene is regulated between the two R. etli
CFN42 networks is almost double that in the E. coli
K12 network. It is because of the inferred nature of the deduced
R. etli CFN42 and S. meliloti 1021 networks. We have constructed a
93 TF–matrices E. coli K12 network with genomic matrix-scan data
deposited in the RegulonDB (Tierrafría et al., 2022). This deduced
network showed that the most regulated gene is pdhR, with 14 times;
in contrast, it was only five times in the biological network, and the
leuO gene was 13 times, whereas in the biological network, it was
seven times (data not shown). From these data, it is estimated that
deduced networks have more targets than biological networks.

TFs specifically encountered in MM or free-
living and symbiotic stages

Subtractions of the TFs fromMM R. etli CFN42 and bacteroid R.
etli CFN42 networks showed 41 TFs encountered only in MM, and
between them, the most represented family of TFs is the LysR family
with seven members: RHE_RS01475, RHE_RS04065, RHE_
RS23465, RHE_RS24350, RHE_RS24725, RHE_RS26465, and
RHE_RS30790. They are followed by five members of the LacI
family: RHE_RS27560, RHE_RS28220, RHE_RS00380, RHE_
RS27925, and RHE_RS18520; three members of the XRE family:
RHE_RS26290, RHE_RS13450, and RHE_RS21900; two AraC
family members: RHE_RS07315 and RHE_RS28855; and two
ArsR family members: RHE_RS15800 and RHE_RS27600. This
highlights the presence of the DNA-directed RNA polymerase
sigma-70 factor RHE_RS25560 (Supplementary Table 3 e).
Meanwhile, in the bacteroid R. etli CFN42 network, 25 TFs were
found only in bacteroid, and the most represented family was LysR
with seven members: RHE_RS03595, RHE_RS04655, RHE_
RS04705, RHE_RS05415, RHE_RS05750, RHE_RS28160, and

RHE_RS28900 for diverse functions such as metabolism quorum
sensing, motility, and virulence (Maddocks and Oyston, 2008).
Interestingly, four members of the TetR/AcrR family, RHE_
RS02400, RHE_RS17430, RHE_RS23110, and RHE_RS23915, are
related to antibiotics production, osmotic stress, efflux pumps, and
multidrug resistance (Deng et al., 2013). The ArsR family RHE_
RS05020 gene, the RHE_RS25170 gene, is a member of the Lrp/
AsnC family (Thaw et al., 2006). Two genes of the MarR family,
RHE_RS01410 and RHE_RS06025, are related to response to
chemical signals, degradation of organic compounds, and control
of virulence gene expression (Deochand et al., 2017). The AraC
family member RHE_RS13370 is related to controlling the
expression of virulence genes of pathogenic bacteria and for a
sense of environmental chemicals (Yang et al., 2011). The LacI
family member RHE_RS12065 is probably involved in regulating
carbohydrate metabolism genes (Ravcheev et al., 2014). In response
to xenobiotic elements, XRE family gene RHE_RS29835 was
identified, and it is probably involved in drug resistance (Miotto
et al., 2022). MraZ RHE_RS14605 gene is also probably involved in
cell division (Supplementary Table 4 e) (Fisunov et al., 2016). There
were 16 TFs more in MM than in bacteroid conditions, and it is
because the bacteria are in an exponential growth phase, whereas the
bacteroids are in a maximal peak of nitrogen fixation activity.
Growth and nitrogen fixation are highly energy-demanding
stages, and each had seven LysR family TFs. This shows that
bacteroids have a higher content of TFs to contend against the
stresses related to the environment than MM.

Free-living S. meliloti 1021 network registered exclusively 82 TFs
and three sigma factors. There were nine lysR family TFs: SMa0303,
SMa0557, SMa1602, SMa1720, SMa1736, SMa1979, SMa1987,
SMa2027, and SMa2287; four LacI family TFs: SM_b20667, SM_
b21187, SM_b21272, and SMa0078; four ArsR family TFs: SM_
b20758, SM_b21008, SM_b21576, and SM_b21601; two AraC
family TFs: SM_b21419 and SM_b21559; two TetR family TFs:
SMa1726 and SMa2387; one ROK family member: SMa 2004; one
MerR family gene: SMA1705; one MUCR family TF SMA1705; and
53 TFs of unknown function. The sigma-32 factors were
SMc00646 and SMc03873. The rpoN sigma54 factor SMc01139 is
also used for nitrogen metabolism (Supplementary Table 5 e).

For the Bacteroid S. meliloti 1021 network, 34 TFs and two sigma
factors were found only in the symbiotic stage. They included five
LysR family TFs: SMa0750, SMa0985, SMa1632, SMa1966, and SM_
b21291; five GntR family TFs: SMa0062, SMa0065, SMa0267,
SMa0789, and SMa1505; two AraC family TFs: SM_b21385 and
SM_b21649; one irr for iron response: SMc00329; and one MerR
family member, the hmrR2 SM_b21579 gene. The ada TF
SMc01728 was for DNA methylation damage response (Landini
and Volkert, 1995). The betI gene SMc00095 is involved in
synthesizing the osmoprotectant glycine betaine (Subhadra et al.,
2020). Twelve TFs were of unknown inferred function. Two two-
component response regulators: SMa1688 and SM_b20869, as well
as two sigma factors, the rpo RNA polymerase sigma factor and the
rpoE4 sigma-E, also called sigma-24, were identified with the locus
tag SMc04051. Accordingly, it was shown that rpoE4 was expressed
under microaerobic conditions (Supplementary Table 6 f)
(Martínez-Salazar et al., 2009).

There were 48 TFs more in the free-living stage than in the
bacteroid stage of S. meliloti 1021, which suggests a greater
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regulatory complexity for growth than for nitrogen fixation in S.
meliloti 1021. This difference was also observed in MM and
bacteroid networks of R. etli CFN42, as seen above. Notably, the
number of TFs between R. etli CFN42 and S. meliloti 1021 was
different. The temperate climate symbiosis of S. meliloti induces
indeterminate nodules on the roots of the alfalfa plant. In contrast,
the tropical symbiosis of the R. etli CFN42 induces determinate
nodules in the bean plant; in both types of nodules, the metabolism
and the differentiation of the bacterium inside the nodules are
different, which were reviewed by Liu et al. (2018) and Green
et al. (2019). Experiments of co-occurrence are ongoing to
determine if these TFs are exclusive for each metabolic condition.

Inferred regulons

Regulons are groups of genes sharing a TF motif, representing a
network’s basic structure. In the MM R. etli CFN42 network,
380 regulons were formed. Analyzing each regulon allows us to
identify the genes that a TF potentially regulates only in a positive
sense. One question is whether the regulon is related to one specific
function; from a global view, the request is not easy. A detailed
revision of the RHE_RS00185 regulon showed that it is mainly
composed of two genes for the production of energy, five genes for
the synthesis and metabolism of amino acids, six genes for
carbohydrate metabolism, 18 TFs, and four for membrane
metabolism, among others. Regulons are ordered by the COG
letter, as shown in the “COG group” column; in the column
“number of the gene,” each of the genes is enumerated; this lets
us know when the genes are neighbors, such as the case for the genes
35 and 36, 58 and 59, 291 and 293, 2,428 and 2,429, 3,117 and 3,118,
3,949 and 3,950, 4,476 and 4,477, and 5,293 and 5,294. Frequently,
TFs regulate the neighbor gene or operons; then, it is expected to
find TFs in these neighbor genes; Genes 35, 59, 2,429, 3,118, 3,950,
and 5,294 are TF genes, and they likely are regulating their neighbor
genes (Supplementary Table 3 f, column CD) (Williams and Bowles,
2004; Esch andMerkl, 2020). These observations strengthen the idea
that these data are not by chance and that the presence of the motif
in the TF and the target–genes has a functional role; however, other
possibilities are not discarded.

The bacteroid R. etli CFN42 network contains 364 regulons; it is
smaller than the MM network. The first regulon listed, RHE_
RS00185, is a common TF found in MM and bacteroid networks.
This regulon comprises two genes for carbohydrate transport and
metabolism, two for coenzyme transport and metabolism, two for
cell wall/membrane envelope biogenesis, five for signal transduction
mechanisms, and five for LacI family TFs. A search of neighbors
based on the numeration genes showed 892 and 893, 2,301 and
2,302, 2,726 and 2,727, and 4,722 and 4,723. From these, the TF
genes were 893, 2,301, 2,727, and 4,723, strongly suggesting that they
regulate their accompanying genes (neighbors) or operons
(Supplementary Table 4 f, column CB). It is frequent to find
paralogous TF genes in the regulons, as is the case of five LacI
family TF genes in the regulon RHE_RS00185, showing
conservation of the motif in the family, suggesting that this motif
is not by chance (Supplementary Table 4 f, column CA).

The free-living S. meliloti 1021 network contains 259 regulons;
the SMa0063 regulon is composed of six TFs annotated only as

transcriptional regulators: one gene for translational, ribosomal
structure and biogenesis of ribosomal proteins, one gene for cell
wall/membrane/envelope biogenesis, and two genes for hypothetical
proteins. Only genes 767 and 768 were neighbors; gene 767 is a 50S
ribosomal protein L6, and gene 768 is a GntR family TF gene
(Supplementary Table 5 f, column BZ).

The bacteroid S. meliloti 1021 network contains 210 regulons,
and it is smaller than the free-living S. meliloti 1021 network; given
the size of this network, the presence of genes with the same COG
group is lesser than that in the free-living network. These regulons
contain a significant number of TFs; taking advantage of this, TFs of
the same family per regulon were searched. The SMA0062 regulon
contains two GntR family TFs, as is the case for the
SMa0065 regulon. The regulon SMa0097 contains two LysR
family TFs. The regulon SMa0179, with three genes, contains the
genes 5,142 and 5,143, where gene 5,142 is a sugar ABC transporter
substrate-binding protein and gene 5,143 is the TF (Supplementary
Table 6 g, column CS). The SMa0222 regulon contains two GntR
family regulators. The SMa0372 regulon contains the neighbor
genes 5,002 and 5,003, where gene 5,002 is an iron ABC
transporter substrate-binding protein and gene 5,003 is of the
LacI family TF. The SMa0520 regulon contains two LysR family
TFs. The SMa0748 regulon contains two GntR family TFs and the
4,457 and 4,458 neighbor genes, where 4,457 gene is a TF and
4,458 gene is a hypothetical protein (Supplementary Table 6 g,
column CS). The presence of paralog TF genes grouped in the same
regulon, which consequently also share a motif, strongly suggests
these regulons are not by chance, and it is highly probable that they
are functionally related.

Neighbor genes expressed in networks

It was shown above that some regulons frequently are with
contiguous genes, and one of the genes is a TF. Therefore, an analysis
of the neighborhood taking the distance of three genes between them
was performed (see Material and Methods) (Taboada-Castro et al.,
2020). The MM R. etli CFN42 network showed 271 groups with two
or more expressed contiguous genes; neighbor genes are denoted
with the same number starting from number 0 (Supplementary
Table 3 g, column CT), that is, the 0 neighbor genes are gene
5,941 RHE_RS30900, gene 5,940 RHE_RS3314,0 and gene
5,939 RHE_RS30980, with RHE_RS33140 being the nitrogen
fixation TF protein. The size of the content of the grouped
neighbor genes varies; for example, group 67 contains ten genes
located in both the (+) and (−) strings, which contain the phaR TF
RHE_RS20540, a CarD family TF RHE_RS20575, the factor sigma-
32 RHE_RS20580, the MarR family TF RHE_RS20595, and the
GntR family TF RHE_RS20625 (Supplementary Table 3 g, column
CT). The bacteroid R. etli CFN42 network showed 208 groups of
neighbor genes. The first group of neighbor genes 0 contains five
genes; because this group is not annotated a TF, they are numerated
from 5,879 to 5,983, the NoiL RHE_RS31100 gene, the aquaporin
RHE_RS31105 gene, the phasin RHE_RS31110 gene, the adenine
phosphoribosyltransferase RHE_RS31115 gene, and the radical
SAM/SPASM domain-containing RHE_RS31120 gene. One of the
representative numerous groups of neighbor genes is the 124; it
contains eleven genes, from 2,542 to 2,562 enumerated genes: the
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DNA-binding response regulator RHE_RS13180, the TF RHE_
RS13190, the TetR/AcrR family TF RHE_RS13215, the
O-methyltransferase RHE_RS13220, the TF RHE_RS13235, the
SDR family NAD(P)-dependent oxidoreductase RHE_RS13240,
the hypothetical gene RHE_RS13255, the VOC family RHE_
RS13265 gene, the 4-hydroxy-tetrahydrodipicolinate reductase
RHE_RS13275, the AraC family TF RHE_RS13295, and the
dehydrogenase RHE_RS13300 (Supplementary Table 4
g, column CR).

The free-living S. meliloti 1021 network contains 126 grouped
neighbor genes. The first neighbor group enumerated with 0 was
constituted of the carbon–phosphorus lyase SM_b20759, the ArsR
family TF SM_b20758, and the propionyl-CoA carboxylase subunit
beta SM_b20755. One of the numerous groups of neighbor genes
was the 111 group numerated from 473 to 487; it contains ABC
transporter permease SMc02160, glucose-6-phosphate isomerase
SMc02163, dihydroorotase SMc02166, ABC transporter permease
SMc02170, TF SMc02172, hypothetical gene SMc02174, and TF
SMc02175 (Supplementary Table 5 g, column CO). Moreover, the
bacteroid S. meliloti 1021 network contains 54 neighbor groups, and
it is the smallest network in this report. The first group enumerated
with 0 contains three genes, the 6,214 to 6,217 enumerated genes,
composed of LacI family TF SM_b21650, AraC family TF SM_
b21649, and alpha-galactoside ABC transporter substrate-binding
precursor SM_b21647. Group one comprises the paaX for the ArsR
family TF SMb_21641 and the paaA phenylacetate-CoA oxygenase
subunit SM_b21640. Group two contains the two genes, the LacI
family TF SM_b20674 and the sugar-uptake ABC transporter ATP-
binding SM_b20673. The most numerous groups contain four to
five genes; for example, the group of neighbor genes 10 contains the
ferredoxin reductase mocF gene SM_b20820, the ferredoxin mocE
gene SM_b20819, the hydrocarbon oxygenase mocD gene SM_
b20818, and the LacI family TF SM_b20817 (Supplementary
Table 6 h, column DG).

A global view of neighbor genes showed that there is an
expression of groups of genes that are contiguous and frequently
contain TF or TFs probably involved in the positive transcriptional
regulation of their contiguous genes. In line with that, some regulons
contain neighbor genes, and consequently, they share a motif (see
above). As a gene may be regulated for more than one TF, valuable
information for experimentalists to design experiments on
transcriptional regulation is to consider the neighborhood of the
genes of interest. However, other genes in the regulons may or may
not be neighbors because for the construction of the networks, the
TF and the target gene with the lowest p-value were prioritized, and
because regulation of genes at a distance was shown (see Material
andMethods) (Williams and Bowles, 2004; Pannier et al., 2017; Esch
and Merkl, 2020).

Distribution of regulon’s genes in modules
of WGCNA

Because the S. meliloti 1021 TRNs were from one transcriptome
analysis (Barnett et al., 2004), we wanted to know if these free-living
and bacteroid profiles correspond to modules, and where the
exclusively TF genes per condition were grouped. A Weighted
Gene Co-expression network analysis (WGCNA) was carried out

with 40 transcriptomes (Langfelder and Horvath, 2008; Galán-
Vásquez and Perez-Rueda, 2019). Transcriptomes were fished in
the COLOMBOS database using a bacteroid profile gene from this
study (Moretto et al., 2016). WGCNA identifies modules using
unsupervised hierarchical clustering, without the use of a priori
defined gene sets. Modules are defined as clusters of densely
interconnected genes by comparing the correlation of expression
levels of the genes. Genes from regulons from the free-living S.
meliloti 1021 TRN were searched in the modules. The module
turquoise grouped 37.12% of genes, brown 30.0%, blue 19.15%,
and pink 9.56%. Meanwhile, the exclusive free-living TFs were
distributed in the turquoise module at 30.59%, blue 25.88, brown
25.88%, and pink 16.47% (Supplementary Table 5 h column CX). In
contrast, genes from the regulons of the S. meliloti 1021 bacteroid
network were grouped in the pink module at 30.82%, blue at 28.26%,
turquoise at 21.8%, brown at 12.38%, and black at 4.71%.
Meanwhile, the bacteroid-exclusive TFs were in turquoise module
at 30.58%, pink at 27.78%, blue at 22.22%, black at 11.11%, and
brown at 8.33% (Supplementary Table 6 i column DN). These data
showed that the pink module contains the greater number of
bacteroid regulon’s genes, whereas the turquoise model grouped
the greatest number of regulon’s genes for free-living conditions.
Although the turquoise module contains, in both profiles, a higher
number of genes, it was expected because in R. etli CFN42 TRNs,
there are a large number of genes shared in these conditions
(Taboada-Castro et al., 2022). Concerning the exclusive TFs from
free-living and bacteroid conditions, some were grouped in the
turquoise module. Notice that the pink and blue modules contain a
second and third lower number of TFs in the bacteroid. Whereas in
the free-living condition, the pink module contained a low number
of exclusive free-living condition TFs (Supplementary Table 5 h
column CX; Supplementary Table 6 i column DM). This shows that
the pink module is grouping the symbiotic nitrogen fixation genes
from the bacteroid network. Of 58 nod and fix genes for nodulation
and nitrogen fixation, 35 genes were found in the pink module, 13 in
blue, five in turquoise, three in brown, one in magenta, and one in
the tan module (data not shown). These data showed that for the S.
meliloti 1021 regulons of the TRNs, the turquoise and the pink
modules from the WGCNA grouped most of the genes from free-
living and bacteroid conditions, respectively. This established a
relationship between regulon and co-expression of genes in
modules from the WGCNA. In addition, the data from one
experiment are a reliable sample to infer a TRN.

Properties of the networks

Disposition of hierarchic TFs in a network
Taking advantage of the network constructed for the analysis of

the properties and to compare with our last report, we search for the
hierarchy looking for a pine-tree-like structure (see Material and
Methods) (Taboada-Castro et al., 2022). TF–TF relationships
showed the basic hierarchy structure of the networks; they
showed a top-down pyramidal structure (See Figures 1A–E). In
MM, R. etliCFN42 network showed 11 levels compared to clustered-
TF-MM, which showed seven levels (Taboada-Castro et al., 2022).
At level_1, the RHE_RS15800 ArsR family transcriptional regulator
and the RHE_RS17050 DNA-binding response regulator were
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identified. At level_2, the RHE_RS05945 LuxR family
transcriptional regulator, the RHE_RS05495 ArsR family
transcriptional regulator, and the RHE_RS06405 transcriptional
regulators were found. The first sigma factor, RHE_
RS17090 RNA polymerase sigma factor RpoH, was found at
level_5. The next sigma factor, RHE_RS20580 sigma-32, was
found at level_6; RHE_RS26680 was located at level_7, sigma

factor RHE_RS15090 rpoD at level_9, and RHE_RS26695 sigma-
70 at level_10. At level_11, five sigma factors, RHE_RS32370, RHE_
RS05265 sigma-70, RHE_RS28625, RHE_RS02045 rpoN sigma-54,
and the RHE_RS03775 sigma factor, were located. Compared to the
E. coli global network, where the sigma factor rpoD sigma-70 is at the
top (Freyre-González et al., 2008), in the Bacillus subtilis global
network, the sigA is at the top (Freyre-González et al., 2012). In this
MM R. etli CFN42-dependent condition network, the first sigma
factor appeared until level_5, showing that the basic structure of
these networks was different (Figure 1A; Supplementary Table 7 a).
Accordingly, a condition-dependent network of E. coli K12 showed
rpoH in a down position compared to that in its global network
(Resendis-Antonio et al., 2005; Gutierrez-Ríos et al., 2007). These
data suggest that the physiological conditions shape the network.

In addition, the bacteroid R. etli CFN42 network contained
13 levels (Figure 1B), whereas for the last report, in the clustered-
TF bacteroid network, we showed four levels (Taboada-Castro
et al., 2022). At level_1, the RHE_RS06405 transcriptional
regulator was identified. At level_2, the RHE_RS17835 ArsR
family transcriptional regulator was located. At level_3, the
RHE_RS25040 transcriptional regulator, the RHE_
RS20580 RNA polymerase factor sigma-32, and the RHE_
RS23635 Lrp/AsnC family transcriptional regulator were
located. Additionally, at level_8, sigma RHE_RS26680 was
found. At level_10, RHE_RS15090 rpoD was identified. At
level_11, sigma factor RHE_RS32370 and RHE_
RS26695 sigma-70 were located. At level_12, sigma RHE_
RS28625 and RHE_RS17090 rpoH were located. Moreover, at
level_13, six sigma factors, RHE_RS20110 rpoE, RHE_
RS02045 rpoN sigma-54, sigma RHE_RS15675, RHE_
RS05265 sigma-70, RHE_RS23540, and RHE_RS03775, were
identified (Figure 1B; Supplementary Table 7 b, column S). R.
etli contains 23 sigma factors, and it has shown the presence of
canonical extracytoplasmic sigma factors groups G1 and G2;
EcfG1 and EcfG2 are canonical and non-canonical,
respectively (Martínez-Salazar et al., 2009). Neither of these
two groups of sigma factors appears to play a significant role
during symbiotic nitrogen fixation (Jans et al., 2013). These data
confirmed that the sigma factors do not play a hierarchal top role
for the MM and bacteroid networks.

The free-living S. meliloti 1021 network constructed with
transcriptome data showed eight levels (Figure 1C) (Barnett et al.,
2004). For level_1, TF SMc02172 was identified. At level_2, rirA
iron-responsive TF SMc00785 and TFs SM_b21598, SMc03816,
and SMc01593 were identified. At level_3, paaX ArsR family TF
SM_b21641, TFs SMc02425 and SMc04134, LysR family TF
SMa0498, and TetR family TF SMa5030 were identified. At
level_4, the first sigma factor-32 rpoH2 as well as 5 TFs, LysR
family SM_b20582 and SMc00163, LacI family SM_b21187,
SMc01945, and SMc01762 were located. Meanwhile, at level_5,
the plasmid located gstR-like TF SM_b20004, MucR family TF
SMa0748, and tetR family TF SM_b21208 were identified
altogether with 10 TFs; SMc00241, SMc03820, SMa0748, SM_
b21021, SMc02504, SMc02523, SM_b21115, SMc00679,
SMc03046, and SMc02984 were found. For level_6, three
sigma factors, the first sigma-32 rpoH1, rpoE5, SM_b21484,
and the RNA polymerase sigma factor SMc04203, together
with 17 TF, were found. At level_7, together with 32 TFs, tacA

FIGURE 1
(A) Hierarchy of the transcriptional regulatory networks of: (A)
minimal medium R. etli CFN42, (B) bacteroid 18 days R. etli CFN42, (C)
free-living S. meliloti 1021, (D) bacteroid S. meliloti 1021, and (E) E. coli
K12 93 TFs.
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sigma-54-dependent TF SMc04011 was found. At level_8, 42 TF
was found, including the RNA polymerase sigma factor SM_
b20531. In addition, for level_10, three sigmas, sigA, rpoD
SMc01563, nifA, SMa0815, and the rpoN sigma-54 factor,
together with 75 TFs, were identified (Figure 1C;
Supplementary Table 7 c, column AF). In contrast to the free-
living network, the bacteroid S. meliloti 1021 network was less
complex, and it contained eight levels (Figure 1D). At level_1, the
unknown function TF SMc02172 was found. At level_2, four TFs,
including two plasmid-borne TFs, Crp family TF SMa1207, and
the SMa0498 LysR TF, were found, accompanied by TFs
SMc04134, SMc03122, and SMc00278. At level_3, the MucR
family TF plasmid-encoded SMa0748, the plasmid-borne lysR
SM_b20582, the chvI chromosomal encoded SMc02560, and the
TetR family TF plasmid-encoded SM_b21208 in addition to six
TFs, SM_b20162, SM_b21222, SMc02470, SMc04163, SMc02323,
and SMc02560, were detected, and in level_4, the first sigma fecl
chromosomal-encoded SMc04203, the cbbR TFR, betI SMc00095,
irr chromosomal-encoded SMc00239 iron response regulator,
and the paaX ArsR family TF were found, in addition to the nine
TFs: SM_b20457, SM_b20901, SMc00241, SMa200, SM_b21598,
SMc02523, SM_b21115, SMa0267, and SMa5030. The second
sigma factor in this network appeared at level_7; the plasmid-
encoded SM_b20531 was identified, in addition to the nifA
SMa0815, and the sigma-54-dependent TF tacA SMc04011, in
addition to gstR SM_b20004, deoR SM_b21299, gbpR SMb20896,
and exoX SM_b20947, and the response regulator cpaE1 were
detected, in addition to 40 TFs. In level_8, three sigma factors, the
plasmid-encoded rpo SM_b20592, rpoE5 (sigma-24) plasmid-
borne SM_b21484, and the rpoE4 (sigma-24) chromosomal-
encoded SMc04051, were detected. In addition, rirA
SMc00785, ctrA SMc00654, actR SMc02584, algR SMc03060,
agpT SM_b21649, and syrM SMa0849 were detected, in
addition to 54 TFs (Figure 1D; Supplementary Table 7
d, column AS).

In addition, a hierarchy analysis of an independent condition
E. coli K12 partial network was included, which was constructed
with deduced matrices of 93 TFs taken from RegulonDB
(Tierrafría et al., 2022). The 93 TFs E coli K12 network
showed eight levels, and their network properties will be
discussed in the next sections (Figure 1E). Altogether, the
deduced networks showed a top-down pyramidal structure
showing the hierarchy among TFs.

On the role of sigma factors in Rhizobium, it was shown that the
11 extracytoplasmic sigma factors of the S. meliloti 1021 strain were
dispensable for free-living growth and nitrogen fixation activity
during symbiosis with the Medicago truncatula alfalfa plant,
suggesting that they control accessory functions (Lang et al.,
2018). Then, it was shown that the role of the sigma factors is
different between species.

Analysis of the networks

Similarity of networks
The deduced MM R etli CFN42, bacteroid R. etli CFN42, free-

living S. meliloti 1021, bacteroid S. meliloti 1021, and
93 TFs E. coli K12 networks were compared with their

respective random networks (ER) constructed according the
Erdös–Rényi model (Figure 2) (see Material and Methods).
Deduced networks segregate from their respective ER
networks, meaning that deduced networks are not random.
Bacteroid S. meliloti 1021 networks had a low similarity with
their respective ER networks. Moreover, R. etli CFN42 and S.
meliloti 1021 networks were more similar to the 93 TFs E. coli
K12 network.

Properties of the networks
Maximal out connectivity, feed-forward circuits, complex

feed-forward circuits, the distribution of the average clustering
coefficient R2 C(K), 3-feedback loops, the distribution of the
connectivity of nodes R2 P(K), density, average clustering
coefficient, and self-regulations were different between the
deduced and ER networks (Figure 3). For the deduced
networks, 93 TFs E. coli K12 network had greater values than
the R. etli CFN42 and S. meliloti 1021 deduced networks;
however, the number of genes in the giant component was
similar. Self-regulations were more remarkable for the R. etli
CFN42 and S. meliloti 1021 networks than for the 93 TFs E. coli
K12 networks because these deduced networks were constructed
only with TFs whose matrices were able to recognize a motif in
their own upstream promotor. These differences among the
control 93 TFs E. coli K12 network, R. etli CFN42, and S.
meliloti 1021 networks are because of their structure and not
because of their incompleteness because the 93 TFs E. coli
network is also an incomplete independent condition network.
In addition to that, they are different species; in the same species,
the dependent and independent conditions of the networks are
also possibly different.

Proportion of TFs and structural genes
The deduced R. etli CFN42 and S. meliloti 1021 networks as

compared with the 93 TFs E. coli K12, 511145_v2022_sRDB22_
eStrong E. coli K12 complete network, and 22438_v2008_
sDBTBS08_Strong B. subtilis network contained a significative
lower number of structural genes. In contrast, the R. etli and S.
meliloti networks contained a greater number of TFs (Figure 4). This
probably favors major connectivity and density for the 93 TFs E. coli
K12 network (see Figure 3).

Kmax of the TFs
The number of genes regulated by a TF is defined by their

Kout, and the Kmax parameter defines the maximum value of
Kout. As was shown above, probably, the low content of
structural genes is diminishing the Kmax of the R. etli
CFN42 and S. meliloti 1021 networks as compared with the
most complete E. coli K12 and B. subtilis networks and the
predicted 93 TFs E. coli K12 network (Figure 5). In other
words, the connectivity of the main hub in R. etli and S.
meliloti 1021 networks is low compared to that of the main
hub in E. coli K12 and B. subtilis networks.

Shortcuts in the networks
The navigability of a network is increased in small-world

networks due to the presence of shortcuts and hubs. The
percentage of shortcuts is more significant for the R. etli and S.
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meliloti 1021 networks than for the deduced and most complete
E. coli K12 and B. subtilis networks (Figure 6). It is not clear whether
these network structures pose any functional advantages.

Kolmogorov–Smirnov distance
We assess the goodness of fit of each network connectivity

distribution to alternative long-tail probability distributions. The
E. coli K12, B. subtilis, and 93 TFs E. coli K12 networks showed a
preference for power-law or truncated power-law, clearly
showing that exponential is not a bona fide model for the
connectivity distributions of these networks. On the contrary,
R. etli and S. meliloti 1021 networks cannot exclude this
possibility as the differences among the exponential and the
alternative distributions are tiny. Bacteroid S. meliloti 1021 is
the only network showing a slight preference for power-law
(Figure 7). However, the low presence of hubs strongly
suggests that the deduced R. etli and S. meliloti 1021 networks
are not scale-free.

The presence of replicons in the deduced networks
A priori that these deduced R. etli CFN42 and S. meliloti

1021 networks were experimentally tested, they showed a

gradually diminishing hierarchy, and these dependent
condition networks are not comparable to the independent
condition hierarchy network of E. coli. Condition-dependent
networks are a subgroup of a global network. It has shown
that species with similar lifestyles conserve their regulatory
motif networks, even with high genetic variability between
them, which suggests evolutionary pressure. Therefore, they
conserved similar logical responses or strategies (Madan Babu
et al., 2006; Galardini et al., 2015). Notably, E. coli and the
symbiotic species R. etli and S. meliloti 1021 have crucial
lifestyle differences. Rhizobia lives in the rhizospheric
environment and as a symbiont in the plant cell. R. etli
CFN42 contains six plasmids, and S. meliloti contains a
chromid and a megaplasmid (Landeta et al., 2011; Galardini
et al., 2015). It was shown that these extrachromosomal entities
are indispensable for growth, meaning that they coded for
essential functions of the bacterial cell; for example, the
plasmid p42e of R. etli CFN42 code for the synthesis of
cobalamin, cardiolipin, cytochrome o, NAD, and thiamine, as
well as the genes for the septum formation; in addition to that,
there are homologous replicons in other symbiotic species
(Landeta et al., 2011; Martínez-Absalón et al., 2022). The S.

FIGURE 2
Symmetry analysis between the deduced transcriptional regulatory networks of minimal medium and bacteroid from R. etli CFN42, free-living and
bacteroid from S. meliloti 1021, E. coli K12 93 TFs, and their respective Erdös–Rényi random networks (ER_avg).
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meliloti chromid and megaplasmid contain genes for metabolism
and symbiosis, respectively (Galardini et al., 2015). Therefore,
probably special evolutionary forces are on the symbiotic species;
for example, it was suggested that adaptive evolution, genome
innovation, and reconstruction of the regulatory networks
conferred the nodulation and the nitrogen fixation ability of
these species (Liu et al., 2023). Then, replicon-specific wiring of
the regulatory network in the S. meliloti strain was suggested, and
this inference may be occurring for all the symbiotic species
(Galardini et al., 2015). In line with this, isoenzymes of
34 enzymes were detected in MM and bacteroid protein
profiles of R. etli CFN42, suggesting independent
transcriptional regulation (Taboada-Castro et al., 2022).
Accordingly, TFs for only MM and symbiosis were indicated
in this study (see above).

Information to design experiments on
transcriptional regulation

In addition to the Supplementary Material included in this
study, the RhizoBindingSites v1.0 database contains all the
information on TFs and their potential targets from nine
rhizobia species (Taboada-Castro et al., 2020) (http://

rhizobindingsites.ccg.unam.mx/). These data were divided into
low, medium, and high stringency. By introducing the name of
the TF in the motif information window, the output data of the
potential targets of the TF at the genomic level are provided,
similarly to as was shown in the networks (Supplementary Tables
3–6 a) (see user’s guide of RhizoBindingSites). In this table, a
column “matrix-ID” containing the names of the matrices of the
TF and the nucleotide sequence of the sites is shown. The matrix
is provided by clicking on the name of the matrix, and a new
window appears with the matrix in the transfact format with the
“Motif Logo” and “Motif Map” applications that display the logo
of the motif and the conservation of this motif in the promoter
regions of the ortholog genes of the TF, respectively. In addition,
as was shown in the Material and Methods section of this study
for the construction of a network, to construct hypothetical
regulons from profile data, the co-expressed TF genes with
structural genes of a profile are used by copy-pasting the TFs
in the left box of the application “prediction of regulatory
networks” and the structural genes with the TFs in the right
box. Then, the “auto” option is selected and run (submitted
“RhizoBindingSites v2.0 is a bioinformatic database of DNA
motifs potentially involved in transcriptional regulation

FIGURE 3
Comparison of properties of the transcriptional regulatory networks of minimal medium and bacteroid from R. etliCFN42, free-living and bacteroid
from S. meliloti 1021, and E. coli K12 93 TFs.
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deduced from their genomic sites”) (Taboada-Castro et al., 2022).
In the RhizoBindingSites v1.0 database, to experimentally search
the motif, the nucleotide sequence of the site, the matrix
representing the site, the logo of the matrix, the conservation
of the motif in the ortholog genes, and the potential target genes
of a TF displayed in a graph (hypothetical regulon) are provided.

Conclusion

In the era of high-throughput technologies, proteomic and
transcriptomic, “omic” data from bacterial culture cells and
symbiosis of R. etli CFN42 and S. meliloti 1021 were used to
construct four transcriptional regulatory networks. A new

method based on the selection of genes clustered by the matrix-
clustering analysis was used to build these networks, and now, a
more significant number of genes were integrated into the R. etli
CFN42 networks than in our last report (Taboada-Castro
et al., 2022).

The R. etli CFN42 and S. meliloti 1021 deduced networks were
constructed with motifs conserved in both the TF and the
gene–target. A highly strict TF gene–target distribution of data
per network was shown. Computational construction of these
networks shows valuable information on the hierarchy of the TFs
for each network, including the times a gene is potentially regulated,
the presence of specific TFs per network, the regulons per network,
neighbor genes containing TFs in the regulons or in the networks,
and the construction of TRNs with one transcriptome data of S.

FIGURE 4
Proportion of transcriptional regulators and structural genes in the transcriptional regulatory networks of minimal medium and bacteroid from R. etli
CFN42, free-living and bacteroid from S. meliloti 1021, and E. coli K12 93 TFs.

FIGURE 5
Number of links between genes (Kout) in the transcriptional regulatory networks of minimal medium and bacteroid from R. etli CFN42, free-living
and bacteroid from S. meliloti 1021, and E. coli K12 93 TFs.
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meliloti 1021. A more significant number of TFs related to the
environment were found in the bacteroid than in the MM networks
of R. etli CFN42.

It was shown that the deduced networks were segregated from
the random Erdös–Rényi networks. They were more similar to the
biological E. coli and B. subtilis networks. Deduced R. etliCFN42 and
S. meliloti 1021 networks are not scale-free because of a low average
clustering coefficient, low maximal connectivity, and the absence of
bona fide hubs, probably by a fractionated origin of the network,
which contains genes from the chromosome, chromids, or plasmids.

In contrast to the biological networks, for deduced networks, the
physiological condition may be re-organizing the circuitry of
the network.

The use of bioinformatic methods becomes fundamental to
deducing conserved motifs involved in transcriptional regulation,
as well as constructing transcriptional regulatory networks. Using
the inferred data of transcriptional regulation to design better
experiments will accelerate the knowledge of, for example,
regulons, which are the bases for a transcriptional
regulatory network.

FIGURE 6
Shortcuts in the transcriptional regulatory networks of minimal medium and bacteroid from R. etli CFN42, free-living and bacteroid from S. meliloti
1021, and E. coli K12 93 TFs.

FIGURE 7
Kolmogorov–Smirnov distance of the transcriptional regulatory networks of minimal medium and bacteroid from R. etli CFN42, free-living and
bacteroid from S. meliloti 1021, and E. coli K12 93 TFs.
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