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Abstract 
Analyzing gene expression data helps the identification of significant biological relationships in genes. With a growing number of open 
biological datasets available, it is paramount to use reliable and innovative methods to perform in-depth analyses of biological data 
and ensure that informed decisions are made based on accurate information. Evolutionary algorithms have been successful in the 
analysis of biological datasets. However, there is still room for improvement, and further analysis should be conducted. In this work, 
we propose Online-Adjusted EVOlutionary Biclustering algorithm (OAEVOB), a novel evolutionary-based biclustering algorithm that 
efficiently handles vast gene expression data. OAEVOB incorporates an online-adjustment feature that efficiently identifies significant 
groups by updating the mutation probability and crossover parameters. We utilize measurements such as Pearson correlation, 
distance correlation, biweight midcorrelation, and mutual information to assess the similarity of genes in the biclusters. Algorithms 
in the specialized literature do not address generalization to diverse gene expression sources. Therefore, to evaluate OAEVOB’s 
performance, we analyzed six gene expression datasets obtained from diverse sequencing data sources, specifically Deoxyribonucleic 
Acid microarray, Ribonucleic Acid (RNA) sequencing, and single-cell RNA sequencing, which are subject to a thorough examination. 
OAEVOB identified significant broad gene expression biclusters with correlations greater than 0.5 across all similarity measurements 
employed. Additionally, when biclusters are evaluated by functional enrichment analysis, they exhibit biological functions, suggesting 
that OAEVOB effectively identifies biclusters with specific cancer and tissue-related genes in the analyzed datasets. We compared the 
OAEVOB’s performance with state-of-the-art methods and outperformed them showing robustness to noise, overlapping, sequencing 
data sources, and gene coverage. 
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Introduction 
Analyzing a large amount of gene expression data can be chal-
lenging for conventional mathematical methodologies. However, 
computer algorithms allow the modeling of gene coordination in 
response to changing environmental conditions, providing valu-
able insights into gene expression [1]. This knowledge has driven 
significant advancements in medicine and biotechnology. 

Gene expression involves transcription and translation. Dur-
ing transcription, Deoxyribonucleic Acid (DNA) is transferred to 
Ribonucleic Acid (RNA), while translation involves decoding RNA 
into proteins [2–8]. 

There are different ways to measure gene expression, including 
methods operating on a smaller scale, such as Serial Analysis 
of Genetic Expression or Polymerase Chain Reaction [9, 10]. 
However, DNA Microarray and RNA-sequencing (RNA-seq) are two 
high-throughput methods that have come into usefulness [11]. 
Additionally, single-cell RNA-sequencing technologies allow for 
unbiased, high-throughput, and high-resolution transcriptome 
investigations of individual cells. Single-cell RNA sequencing has 
provided insights into tissue composition, transcription dynamics, 
and gene regulatory networks. Several gene expression databases 

cover bacteria, plants, and humans, including repositories 
relevant to diseases like cancer [12–17]. The Sequence Read 
Archive, for instance, contains high-throughput data that has 
grown exponentially to approximately 36 petabytes (https:// 
ncbiinsights.ncbi.nlm.nih.gov/2020/06/30/sra-rfi/). 

The abundance of these gene expression datasets allows for 
finding condition-specific functional gene modules, defined as a 
highly organized expression pattern on a certain gene set. These 
modules are often associated with particular biological processes, 
such as diseases. In this context, biclustering techniques have 
been increasingly used to analyze gene expression data [18–20]. 
Evolutionary algorithms have proven particularly helpful in this 
context, as they help identify meaningful relationships and group 
common data in both rows and columns [21]. Biclustering aims 
to uncover relationships in the data and cluster specific rows and 
columns in any order. However, solving the biclustering problem 
and finding significant biclusters is difficult as it falls into the NP-
hard category [22]. 

This work proposes a novel Online-Adjusted EVOlutionary 
Biclustering algorithm (OAEVOB) to analyze gene expression data 
and identify significant gene groupings involved in biological
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functions. OAEVOB is capable of identifying crucial biological 
relationships in any numerical gene expression matrix. The main 
contributions of our work are the following: 

• The method’s primary innovation is the application of the 
Jaccard coefficient to eliminate nearly identical biclusters 
and using two quality measu-rements, ACV (Average Corre-
lation Value) and VEt (Transposed Virtual Error) in the fitness 
evaluation and mutation process, respectively [23]. The ACV 
calculation effectively detects enriched biclusters and has a 
relationship with gene ontology (GO) terms. 

• We conducted experiments to determine the most suitable 
parameters for improving OAEVOB’s performance, including 
preprocessing types, online-adjustment techniques for 
crossover and mutation, similarity measurements, initial 
exploration, and mutation types. 

• OAEVOB includes most of the genes in the biclusters from the 
analyzed data, allowing gene analysis to identify meaningful 
biological relationships. 

• Using a gene enrichment analysis, we assessed the biclus-
ters obtained by OAEVOB and discovered significant modules 
related to cancer types and specific tissues. 

• OAEVOB can identify significant modules in any numerical 
gene expression matrix, regardless of the technology used to 
extract the expression information. 

• OAEVOB obtained competitive results in relevance and recov-
ery scores compared to the state-of-the-art algorithms in 
simulated datasets (SD). 

• We compared OAEVOB with state-of-the-art algorithms and 
achieved competitive results in identifying significant biclus-
ters and relevant biological functions. 

The document is structured as follows. The second section 
describes the state-of-the-art algorithms in the specialized litera-
ture. The third part explains the gene expression datasets used 
in this work and outlines the OAEVOB’s stages. The following 
section shows the results and compares them with state-of-the-
art biclustering algorithms. The fifth section describes the gene 
enrichment analysis of the modules obtained by OAEVOB. The 
sixth section analyzes the results and the last section discusses 
the conclusions and future work. 

State-of-the-art 
Many metaheuristic approaches have been developed to identify 
significant gene patterns, and in this section, we will highlight the 
most relevant papers focusing on biclustering algorithms. 

In [24], ELSA was proposed to evaluate biclusters’ statistical 
and biological quality separately, using two objective functions 
based on the Average Correlation Function (ACF). An archiving 
strategy and two different types of mutations are used in ELSA. 
The first mutation type selects only annotated genes, which may 
result in the loss of significant genes by ignoring certain genes. 
The second mutation type involves incorporating unannotated 
genes into biclusters. Compared to other algorithms, ELSA per-
forms better on microarray datasets. However, ELSA may force 
the formation of biclusters with false relationships. Additionally, 
gene information should be excluded to avoid bias towards known 
genes and uncover interesting relationships that have not yet 
been discovered. 

In [25], the authors introduced EBA. The researchers used 
biclustering quality indicators: bicluster size (BSize), Mean Square 
Residue (MSR), and ACF. It was found that the EBA configuration 
that uses selection with aggregation and biclustering crossover 

and mutation operators outperformed other configurations for 
microarray datasets. In addition, EBA and ELSA evaluated the 
algorithms’ performance using the same two microarray datasets 
without using RNA-seq and single-cell RNA-seq data, which is 
significant since these are nowadays the dominant techniques for 
gene expression analysis. 

In [26], Bi-Phase Evolutionary Searching for Biclusters (BP-
EBA) employed binary encoding, hierarchical clustering to find 
bicluster seeds, and biclustering quality indicators such as MSR, 
Scaling MSR, and BSize. The algorithm operates in two stages to 
evolve genes and conditions. BP-EBA was compared to previous 
biclustering algorithms using microarray datasets, and the over-
all results were good. However, during the process of forming 
bicluster seeds, crucial genes and conditions might be excluded, 
impeding meaningful data analysis. 

In [27], the researchers introduce QUBIC2, which generates 
a representing gene for each row in the discretization matrix. 
Bicluster seeds are detected and expanded by identifying genes 
that improve the bicluster. The study shows that QUBIC2 
outperforms other algorithms like EBIC, BIMAX, ISA, and PLAID 
on microarray, RNA-seq, and single-cell RNA-seq datasets 
[18]. However, a mixture of Gaussian distribution (MGD) is 
recommended for microarray datasets, while left-truncated MGD 
is recommended for RNA-seq-based datasets. Hence, two separate 
algorithms were developed to address the biclustering task for 
different sequencing data. 

In [28], RecBic generates bicluster seeds by considering each 
subset of columns. The highest trend-preserving biclusters with 
dimensions of h∗3 are identified based on each pair of columns in 
each subset. It then extends the core bicluster with a preset error 
rate α when there is noise while following the trend-preserving 
approach to extend the bicluster without noise. RecBic outper-
formed QUBIC2 in finding significant biclusters using microarray 
and RNA-seq datasets. However, RecBic’s complexity is O(n3) in 
the main configuration, which might be highly complex when 
using large datasets. 

All-round biclustering algorithm (ARBic) [29] is presented as 
an all-around biclustering algorithm to handle noise levels and 
trend preservation in datasets. The authors use a pseudo directed 
acyclic graph to detect the longest path in the seeds and grow the 
optimum seeds to form biclusters. The authors analyze five real 
datasets (yeast, Escherichia coli, and human) with many columns 
to identify biclusters that are broader and not narrow (biclusters 
with a few columns), incorporating several columns in biclus-
ters rather than being limited to just a few. ARBic found trend-
preserved and overlapped biclusters with different noise lev-
els in SDs, outperforming QUBIC2. However, ARBic is primarily 
applied to microarray datasets, lacking analysis on RNA-seq and 
single-cell RNA-seq real datasets. These datasets typically contain 
many columns and should have been utilized for their compar-
ison to identify broader biclusters. Furthermore, ARBic utilizes 
RecBic for datasets with fewer than 500 columns and greater 
than 10 000 rows, demonstrating that RecBic outperforms ARBic 
in these datasets. 

RUBic [30] is a biclustering algorithm that prioritizes speed and 
scalability. RUBic’s input is a binary matrix that is transformed 
to decimal by converting consecutive four-bit binary numbers 
encoded from a pair of seed rows using bit-wise AND operations. 
However, RUBic is designed to extract biclusters from binary 
datasets, lacking analysis of a large number of microarray, RNA-
seq, and single cell RNA-seq datasets that are not binary. BGB 
[31] utilizes biological graph knowledge, providing control over 
the correlation level of the shrinkage parameters and allowing
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Table 1. Datasets analyzed by OAEVOB 

Dataset Technology Genes ∗ Conditions Size Description 

Tissp DNA microarray 14 126 ∗ 158 33.7 MB Gene expression profiles of 79 physiologically healthy human 
tissues. 

Cocel RNA-seq 14 200 ∗ 54 23.9 MB 54 human cell lines of colon-rectal cancer. 
Mouse Single-cell RNA-seq 3005 ∗ 5000 30.6 MB S1 and CA1 region, from 3005 single-cell transcriptomes. 
Ustilago DNA microarray 5810 ∗ 168 11.8 MB Ustilago maydis genes. 
BCancer RNA-seq 28 143 ∗ 49 22.3 MB Breast cancer genes. 
GPL5175 DNA microarray 2308 ∗ 4436 184.9 MB Human tissue genes. 

for the retrieval of overlapping biclusters. Nevertheless, it is a 
biclustering algorithm designed to extract biclusters from binary 
datasets, similar to RUBic. 

In [32], a two-stage biclustering algorithm using NSGA-II was 
employed to find sparse biclusters in microarray datasets. This 
algorithm addresses two objectives: bicluster size and ACV. 
They utilized NSGA-II was employed to find sparse biclusters 
in microarray datasets. The algorithm outperformed other 
biclustering algorithms in finding scale and shifting patterns in 
noisy synthetic and real datasets. However, our paper focuses on 
OAEVOB using a single objective. Future work will consider many 
objectives in the biclustering task. 

We analyzed various biclustering algorithms and their varia-
tions and believe there is room for improvement, especially in 
using RNA-seq and single-cell RNA-seq datasets. We propose a 
novel algorithm to address these concerns. The OAEVOB’s com-
ponents are further described in subsection (Online-Adjusted 
EVOlutionary Biclustering). 

Materials and methods 
Gene expression data 
Gene expression data extraction technologies vary significantly 
due to differences in experimental technologies and the nature 
of the information captured. For instance, microarrays have been 
widely used since the late 90s, and although it is no longer 
very popular, a large amount of data are available [33]. RNA-
seq technology is more accurate than microarrays in determining 
gene expression values [34]. Furthermore, researchers have found 
single-cell RNA-seq technology to be effective at identifying gene 
functions that were previously undetected using microarrays and 
RNA-seq [35]. 

Given the importance of these varied technologies, analyzing 
gene expression datasets using biclustering algorithms to 
detect patterns is crucial for uncovering novel relationships. To 
comprehensively assess biclustering algorithms, we carefully 
selected six diverse datasets: Tissp, Cocel, Mouse, Ustilago, 
BCancer, and GPL5175, described in Table 1, representing different 
sequencing technologies and species (human, Ustilago maydis, 
and mouse). These datasets offer a significant challenge in 
identifying tissue-specific genes, cancer-related genes, and brain 
functions. 

The first dataset, Tissp, contains gene expression data from 
tissue-specific of seventy-nine pathologically healthy human tis-
sues identified with microarray technologies. It includes 14 042 
human genes and 158 samples [14]. Also, we annotated each gene 
using an extensive Ensemble ID database for unique identification 
www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS596. 

The second dataset, the Colon-rectal Cancer dataset (here 
called Cocel), comprises 54 cell lines and 14 200 genes from 

RNA-sequencing samples of various malignancies collected from 
the Cancer Cell Line Encyclopedia [36]. Thus, colon-rectal cancer 
receives special attention in our work; the necessary cell lines 
were screened www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= 
GSE35896. 

In the third dataset, Mouse, scientists used single-cell RNA-
sequencing to analyze mice’s primary somatosensory cortex and 
hippocampus CA1 region [37]. Mouse contains 3005 genes and 
5000 samples https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi? 
acc=GSE46980. 

GPL5175 is a human tissue collection aggregating public 
datasets utilizing the GPL5175 microarray platform https:// 
zenodo.org/records/1157938. It was obtained from seek.princeton. 
edu and used in [29]. Ustilago is a microarray dataset of U. maydis 
including 5810 genes and 168 conditions [38]. Breast cancer is a 
RNA-seq dataset that contains 28 143 genes and 49 conditions 
(here called BCancer) [39]. 

Therefore, analyzing these datasets using biclustering algo-
rithms to detect patterns is crucial for identifying relationships 
in future datasets that can provide novel and significant 
information. We meticulously selected relevant datasets to 
gather diverse sequencing data to assess biclustering algorithms 
comprehensively. 

Online-Adjusted EVOlutionary Biclustering 
This section introduces the fundamental components of OAEVOB. 
We conducted a broad analysis of the selected components and 
investigated the results for statistical significance. 

Preprocessing 
In preprocessing, data are cleaned and normalized. ELSA and 
QUBIC2 replace zero values with other values greater than zero. 
However, modifying the dataset might change the algorithm’s 
results. In our work, we explored alternatives to this treatment. 
We explored strategies individually to preprocess data: (1) Mean: 
replacing each value considering the row mean; (2) Standard 
deviation: replacing each value considering the standard devi-
ation of the row; (3) Z-score: the values are normalized based 
on the mean and standard deviation; (4) Var-filter: R library 
to perform data curation with parameters to tune; (5) Remove 
zeros: it consists of removing rows that contain at least one 
zero; (6) Scalarization: Gaussian with zero mean and variance 
of one; (7) RPKM (Reads per Kilobase Million): it is employed in 
single-end RNA-seq, where every read corresponds to a sequenced 
single fragment; (8) FPKM (Fragments per Kilobase Million): the 
number of gene fragments is divided by the total sequencing 
depth; thus, the ratio is divided by the gene length. (9) TPM 
(Transcripts per Kilobase Million): normalization for gene length 
and sequencing depth to compare the proportion of reads mapped 
to a gene in each sample. Particular strategies outperform others
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Figure 1. Representation of bicluster’s codification in OAEVOB. The 
indexes of genes (2, 5, 6, 8, 11) and conditions (1, 3, 4, 6) are randomly 
selected to form the bicluster that contains the original values obtained 
from GEM (rectangles colored in green). 

in boosting OAEVOB outcomes. In summary, zero removal (ZR) 
outperformed the Mean, Var-filter, Standard Deviation, and Z-
score in Tissp and Cocel. Only RNA-seq data can utilize RPKM, 
FPKM, and TPM. TPM outperformed RPKM and FPKM, likely due to 
its resemblance to scalarization. Therefore, ZR and scalarization 
were applied to Tissp, Cocel, Ustilago, BCancer, and GPL5175, 
and TPM was applied to Cocel and BCancer. Mouse does not 
undergo any preprocessing since single-cell RNA-seq datasets are 
typically highly dispersed and contain many zeros, rendering ZR 
ineffective. 

Codification 
Differentiating between genes and conditions within a single 
string that encodes the bicluster and the presence of many zeros 
may make the gene expression analysis more difficult using high 
time and memory resources [20, 26, 40]. The encoding method 
used in this work comprises only the integer indices of genes 
and conditions within the bicluster. This approach avoids the 
limitations of binary strings, such as the need to have a length-
fixed string with several zeros. This approach eliminates the need 
to differentiate between genes and conditions in a single string. 
Figure 1 illustrates how the genes and conditions are randomly 
selected to create a bicluster. 

Initial exploration 
In generation zero, OAEVOB creates biclusters using integer codi-
fication to explore hidden spanning patterns in the data. OAEVOB 
randomly proposes 300 biclusters using MIXRNG (it combines 
the Python random number generator and a random number 
generator based on [41]). We determined to avoid creating many 
biclusters in the range of 600–3000, as it was computationally 
expensive. After running OAEVOB 36 times, it was found that 
creating large numbers of biclusters did not significantly improve 
the outcomes regarding the correlations we obtained (fitness). 
Statistical significance is enhanced by running OAEVOB 36 times 
as suggested in [42] and [43]. Generally, 36 runs is often considered 
a practical balance between computational cost and statistical 
robustness [43]. 

The 300 biclusters created during the initial exploration stage 
are sorted based on their fitness. Figure 2 shows the chosen genes 
and conditions in green, blue, and gray squares. We preserve 
bic = 120 biclusters with the highest fitness to maintain a 
population = 60 biclusters in the subsequent generations. The 
number of biclusters can not be determined in real datasets 
without ground truth. Since there is no fixed number of biclusters 
used in biclustering algorithms of the specialized literature, we 
use 60 biclusters to establish a fixed number and have a fair 
comparison with the state-of-the-art algorithms. 

The MIXRNG excels in generating different random numbers, 
thereby proposing significantly diverse biclusters. This diversity is 
crucial for exploring dissimilar biclusters within the dataset. With 
MIXRNG, the initial exploration process is straightforward, requir-
ing only a single parameter to define the number of biclusters 
created, ensuring high-quality solutions. Contrarily, other meth-
ods necessitate the definition of multiple parameters, which can 
be challenging due to the various combinations in each dataset. 

Crossover and mutation 
We used Simulated Binary Crossover (SBX) for crossover [44], 
adapting it for use with integers by taking the floor of the number. 
Despite SBX performing well in codifications with numbers in 
R, we  employed  it  in  Z, as it can generate biclusters with high 
correlation. 

Furthermore, OAEVOB uses three mutation types: addition, 
replacement, or removal of a gene or condition in a bicluster [18]. 
Thus, a random number is generated to decide which mutation 
to use in each iteration. A virtual condition (VCt) and a virtual 
gene (VGt) are computed in the mutation process. This calculation 
involves a detailed process of computing a representative gene 
and condition that best represents the bicluster. It is worth noting 
that this strategy can be achieved using the VEt measurement as 
described in [23]. The addition strategy adds a gene or condition 
that improves the bicluster’s fitness. The replacement strategy 
involves substituting a gene or condition in the bicluster that 
is underperforming based on its fitness; then, a gene or condi-
tion that improves the bicluster’s fitness is added. Similarly, the 
removal strategy deletes the gene or condition with the poorest 
fitness performance in the bicluster. 

Adaptation of evolutionary operators 
The bicluster’s fitness is determined by calculating a similar-
ity measurement (Fig. 4). We sort the biclusters by fitness and 
consider top bic = 60 for the fitness average BicAv (Biclusters 
Average) computation (Fig. 5). The BicAv is calculated every k = 5 
generations until a stop criterion is met. We tested other val-
ues for k in a range from k = 2 to 50; however, these values
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Figure 2. In this example, three biclusters are formed in the initial exploration. The fitness of each bicluster is then calculated, and the two biclusters 
with the highest fitness are preserved for the first generation. 

worsened the OAEVOB’s results regarding correlations obtained. 
The online-adjustment characteristic involves updating the ηc, 
which is a crucial value of the complete SBX operator, and muta-
tion probability values regarding the BicAv of the current gener-
ation. Variation in ηc influences the similarity of the offspring, 
resulting in them being very different or nearly identical, particu-
larly in the range from 2 to 30, respectively, which is used in this 
work [44]. The online-adjustment also updates the mutation prob-
ability values, which are set to 1/30 when OAEVOB individuals 
have greater fitness. These probabilities are increased to 0.1 when 
the offspring exhibit poorer fitness in order to apply mutation to 
more individuals. Online-adjustment takes advantage of knowing 
the fitness of individuals to determine if OAEVOB is improving 
their biclusters and then to set a greater value to ηc (until 30) 
and a value of 1/30 to mutation probability to generate similar 
offspring. On the other hand, when the offspring have poorer 
fitness, the ηc value is decreased (until 2), and mutation prob-
ability is increased to 0.1 to generate very different individuals. 
Furthermore, online-adjustment was implemented in OAEVOB 
and compared when it was absent using Pearson and distance 
correlation. The results are illustrated in Fig. 3. The biclusters 
with the online-adjustment characteristic have the highest corre-
lations in the top 10 biclusters, outperforming those without this 
characteristic. 

The online-adjustment considers the BicAv value to update 
ηc in the crossover process and the mutation probability. When 
the current BicAv is less than the previous BicAv, the  ηc value 
decreases, and the mutation probability increases for generat-
ing different offspring. When BicAv is greater than the previ-
ous BicAv, the mutation probability decreases, and the ηc value 
increases, resulting in more similar offspring. These updates allow 
OAEVOB to continue exploring by proposing alternative biclusters 
and exploiting promising ones. 

Algorithm 1 describes the updates of ηc and mutation prob-
ability values. The ηc value is crucial for the SBX operator. It 
ranges from 2 to 30 and changes the crossover process, creating 
different biclusters when the ηc value is low. Conversely, when the 
biclusters are of good quality, the ηc value is high, which helps to 
obtain biclusters that are similar to those of good quality. 

Fitness evaluation 
The ACV strongly correlates with GO terms, making it a useful 
tool for detecting enriched biclusters and identifying significant
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Figure 3. The highest fitness scores were obtained utilizing online-adjustment using Pearson and distance correlation. 

Figure 4. We compute the bicluster’s ACV. We calculate the correlation of each gene concerning the remaining genes in the bicluster and compute the 
average to determine the bicluster’s fitness (0.583). The biclusters are then sorted by fitness, and we choose the bic = 2 (in this example) with the highest 
fitness. 

Figure 5. The BicAv is the average of all the biclusters’ fitness of the last k generations (0.52 in this example). When the current BicAv is less or greater 
than the previous one, the online-adjustment characteristic updates the ηc and mutation probability values. 
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biological functions. OAEVOB uses the ACV value to evaluate 
biclusters using four measurements: Pearson correlation, biweight 
midcorrelation, distance correlation, and mutual information. 
Each measurement contributes to our comprehensive assessment 
of the biclusters. 

Pearson correlation measures the strength and direction 
of a linear relationship between two random variables [45]. 
However, it is susceptible to outliers. Our work considers Biweight 
midcorrelation to address this issue [46]. Another approach, 
distance correlation, was introduced in [47] to determine 
dependence and independence between two random vectors. 
Additionally, Mutual Information (MI) can be used to quantify 
how much knowledge one random variable has about another 
variable [48]. 

Jaccard coefficient computation 
When performing generations, we obtain similar biclusters pro-
posed by OAEVOB using MIXRNG. We used the Jaccard Coefficient 
(JC) computation to measure the similarity between biclusters 
and propose unique biclusters in each generation. OAEVOB com-
pares each bicluster with all others in each generation to compute 
its JC by pair, resulting in a matrix of JCs with a diagonal of 1. 
Our observation that biclusters with a JC greater than 0.3 share 
several genes and conditions is a pivotal insight. We propose two 
thresholds: a soft threshold = 0.1 (ST) and a hard threshold = 0.3 
(HT). If the JC between two biclusters is greater than ST, one is 
replaced with a new randomly created individual, and the other 
is kept (replaceOneIndividual in Algorithm 2). If the JC is greater 
than HT, both individuals are replaced by two randomly created 
individuals (replaceBothIndividuals). 

The complete OAEVOB algorithm 
Algorithm 2 describes OAEVOB’s steps. Users specify upper and 
lower bounds for the number of rows and columns (m ∗ n, lines 
4 and 5), i.e. the number of genes and conditions that will 
form any bicluster, and the number of biclusters (line 2). Our 
model begins (line 10) by generating three hundred biclusters 
(individuals) using MIXRNG (line 11). Fitness computation (line 
12) is computed employing a similarity measurement, and 
the top 120 biclusters are preserved (line 13) for  the first  
generation (line 14). This involves calculating the JC (lines 
15 − 20) and selecting individuals for crossover and mutation 
(lines 21 − 23). 

Subsequently, the BicAv value of the current generation is 
calculated and compared against the previous one (lines 24−−25 
and 28). The ηc and mutation probability values are adjusted (lines 
26 −−27). The biclusters are sorted concerning their fitness (lines 
29 − −30). The algorithm ends when a stop criterion is reached 
(the number of generations = 100). 

The OAEVOB’s algorithm complexity is O(n2) when employing 
Pearson and biweight midcorrelation, where N = GEM (n 
rows ∗ m columns). It is O(n3) when using MI and distance 
correlation. 

To find the best parameter tuning, researchers have utilized 
statistical tests such as Wilcoxon-rank [49, 50]. Figure 6 shows the 
statistical significance of each parameter using Wilcoxon-rank. 
The outcomes indicated that MIXRNG yields better results during 
initial exploration, computing the Jaccard coefficient, preprocess-
ing using scalarization, ZR and TPM, ηc, and  mutation probability 
in their ranges, are the most suitable parameters for OAEVOB. 
OAEVOB is visually represented in Fig. 7. 

Results 
This section presents the experimental settings and the results 
obtained by OAEVOB. For all experiments, we performed 36 inde-
pendent runs.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/26/1/bbae681/7941742 by guest on 03 January 2025



8 | Galindo-Hernández et al.

Table 2. Highest fitness obtained by OAEVOB in the datasets 

Dataset Pearson corr. Biweight midcorr. Distance corr. Mutual Info. 

Tissp 0.872202 ± 0.03646 0.714466 ± 0.01358 0.807530 ± 0.01077 0.999639 ± 0.00065 
Cocel 0.553548 ± 0.01403 0.526466 ± 0.00619 0.546173 ± 0.01786 0.999465 ± 0.00923 
Mouse 0.548686 ± 0.02094 0.524901 ± 0.01005 0.529108 ± 0.01163 0.992874 ± 0.00299 
Ustilago 0.926253 ± 0.00492 0.859471 ± 0.00847 0.824986 ± 0.00682 0.999816 ± 0.00074 
BCancer 0.890483 ± 0.02903 0.769392 ± 0.02193 0.748021 ± 0.03920 0.994935 ± 0.01092 
GPL5175 0.700671 ± 0.02799 0.623995 ± 0.01906 0.620129 ± 0.02363 0.991038 ± 0.00539 

Fitness normalized: 1 is best and 0 is worst. Average and ± standard deviation. 

Figure 6. Wilcoxon-rank test to compute the side effect. In this case, a 
value greater than 0.3 is considered a medium level, and a greater than 0.5 
is strong. The features of initial exploration, online-adjustment, and TPM 
scalarization (in Cocel) are shown to improve the OAEVOB’s performance. 

Table 3. Parameters configuration for the similarity 
measurements computation. Values depict percentages of rows 
or columns 

Parameter Genes (rows) Conditions (columns) 

Tissp [0.01, 0.04] [0.04, 0.1] 
Cocel [0.01, 0.04] [0.1, 0.3] 
Mouse [0.05, 0.15] [0.001, 0.003] 
Ustilago [0.025, 0.1] [0.04, 0.1] 
BCancer [0.005, 0.02] [0.1, 0.3] 
GPL5175 [0.05, 0.15] [0.001, 0.003] 

Similarity measurements. 
The bicluster’s fitness is calculated using four similarity mea-
surements. The highest fitness that OAEVOB reaches across all 
datasets is described in Table 2. MI values range from zero to 
infinite. Therefore, we randomly proposed thirty thousand unre-
peated biclusters in the six datasets and computed their MI to 
normalize the values from zero to one. Only OAEVOB is analyzed 
in this subsection because its fitness is based on four similarity 
measurements. Table 3 describes the parameters used in the 
similarity measurements analysis. 

Relevance and recovery scores 
We utilize recovery and relevance scores [51], based on the simi-
larity and match score (average similarity) between two biclusters 
defined as [29]: 

score(G1, G2) = 
1 

|G1 |
∑

bic1∈G1 
maxbic2∈G2 

|bic1∩bic2 | 
|bic1∪bic2 | 

This score measures the average similarity between two sets 
of biclusters G1 and G2, where  |bic1 ∩ bic2| and |bic1 ∪ bic2| are the 
elements in their intersection and union between two biclusters, 
respectively. Let G1 and G2 be the sets of true and predicted 

Table 4. General parameters configuration of OAEVOB 

Parameter Value 

Generations 100 
Population 60 
Genes (rows) [0.005, 0.15]∗ 

Conditions (columns) [0.001, 0.3]∗ 

Crossover 1 
ηc [2, 30] 
Mutation probability [1/30, 0.1] 
Similarity measurements Pearson, Biweight, Distance and MI 
Hard, soft threshold 0.3, 0.1 
Random number generator MIXRNG 

∗Values depict percentages of rows or columns. 

biclusters, respectively, then we have score(G1, G2) as the recovery 
score and score(G2, G1) as the relevance score. 

Simulated datasets 
We implement a comparison of the OAEVOB’s performance with 
the following state-of-the-art algorithms. 

• BP-EBA [26] 
• Fast and accurate biclustering algorithm (RecBic) [28] 
• Factor Analysis for BIcluster Acquisition (FABIA) [52] 
• SSLB [53] 
• ARBic [29] 

The algorithms were executed with the default parameters 
specified in their respective papers. We compared the algorithms 
utilizing the gene coverage, number of biclusters, gene average, 
SDs computing relevance and recovery scores, and biclusters with 
a p − value < 0.01, which are the standard bases of comparison in 
the specialized literature. We employed Python v3.8 to implement 
OAEVOB (with the parameters described in Table 4) using a MacOS 
computer with a core i9 processor, having 10 cores, 64 GB of RAM, 
and 1TB of hard disk. 

We created SD as described in [29]. We generated a 600 ∗ 600 
data matrix sampled from a normal distribution N (0, 1). The  
nine SDs generated contain different characteristics such as 
six trend-preserving biclusters, overlapping levels of 30 ∗ 30, 
40 ∗ 40, 50 ∗ 50, without overlapping biclusters, a noise level 
of 0.1, 0.2, 0.3, and without noisy biclusters. In the nine SDs 
generated, OAEVOB obtained an average of 0.62 and 0.6 in rele-
vance and recovery scores, respectively. OAEVOB outperformed 
SSLB, BP-EBA, FABIA, and RecBic, obtaining very competitive 
results. ARBic is the only algorithm that outperformed OAEVOB. 
RecBic and FABIA obtained average scores lower than OAEVOB 
and ARBic. However, BP-EBA and SSLB obtained the lowest 
scores on average. The parameters used in these experiments 
are described in Table 5, and results in SDs are illustrated 
in Fig. 8.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/26/1/bbae681/7941742 by guest on 03 January 2025



OAEVOB | 9

Figure 7. The main steps of OAEVOB for all the generations. The algorithm begins with the initial exploration performed only once. The following steps, 
which are performed in every generation, consist of crossover, mutation, Jaccard calculation, fitness, ACV computation, and preserving the biclusters 
with the highest fitness. 

Figure 8. Relevance and recovery results in the SDs. A) Dataset with the implanted biclusters with an overlapping level of 50 ∗ 50. B) Dataset with the 
implanted biclusters with a noise level of 0.2. C) Average across all SDs with implanted biclusters with different overlapping and level noise. OAEVOB 
obtained the greatest relevance and recovery scores in (A) and (B), while in (C), OAEVOB shows very competitive results with results of 0.62 and 0.6 in 
relevance and recovery scores, respectively, only outperformed by ARBic. 

Furthermore, only OAEVOB is used on SDs generated with 
Python’s random number generator, using data distributions such 
as normal, Cauchy, and binomial. Table 6 provides information 
on the parameters used in this experiment. Table 7 shows the 
correlations that OAEVOB obtained in these SDs. 

Gene coverage 
Examining each gene in the dataset is imperative to find novel 
gene relationships. It is crucial not to modify gene values based 

on predetermined criteria such as likelihood, neighborhood, or 
feature selection. Gene Coverage (GeneCov) analyzes when a 
gene appears in a bicluster of the current generation and is 
used to determine whether an algorithm succeeds in exploring 
the dataset. Enhancing gene coverage improves the analysis of 
different gene combinations and helps find biological functions. 
The JC computation allows OAEVOB to reach a GeneCov 
greater than 0.8 across all datasets. Using SSLB, BP-EBA, RecBic, 
FABIA, ARBic, and OAEVOB, we calculated the GeneCov of
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Table 5. Parameters configuration in SDs generated with 
implanted biclusters. Values depict percentages of rows or 
columns 

Parameter Simulated datasets 

Genes (rows) [0.166, 0.166] 
Conditions (columns) [0.166, 0.166] 

Table 6. Parameters configuration in SDs generated using 
statistical distributions. Values depict percentages of rows or 
columns 

Parameter Normal Cauchy Binomial 

Genes (rows) [0.1, 0.5] [0.1, 0.5] [0.1, 0.5] 
Conditions (columns) [0.01, 0.05] [0.01, 0.05] [0.01, 0.05] 

Table 7. OAEVOB correlation results when applied to SDs 
generated using statistical distributions 

SD Pearson corr. Biweight midcorr. Distance corr. 

Normal 0.4039 ± 0.0125 0.4017 ± 0.0097 0.41003 ± 0.0068 
Cauchy 0.4051 ± 0.0086 0.3988 ± 0.0104 0.3925 ± 0.0291 
Binomial 0.4019 ± 0.0247 0.3996 ± 0.0182 0.4015 ± 0.0158 

Fitness normalized: 1 is best and 0 is worst. Average and ± standard 
deviation. 

Table 8. Parameters configuration in gene coverage. Values 
depict percentages of rows or columns 

Parameter Genes (rows) Conditions (columns) 

Tissp [0.01, 0.04] [0.04, 0.1] 
Cocel [0.01, 0.04] [0.1, 0.3] 
Mouse [0.05, 0.15] [0.001, 0.003] 
Ustilago [0.025, 0.1] [0.04, 0.1] 
BCancer [0.005, 0.02] [0.1, 0.3] 
GPL5175 [0.05, 0.15] [0.001, 0.003] 

Tissp, Cocel, Mouse, Ustilago, BCancer, and GPL5175, and the 
results are presented in Fig. 9. Additionally, Table 8 includes 
information regarding the parameters utilized in the GeneCov 
assessment. 

Number of biclusters 
Our work considers the number of biclusters (NB), which describes 
the number of biclusters obtained in an algorithm run. Potential 
future decision-making is ignored when the user’s preferences are 
not considered. Table 9 shows the results of NB. 

Summary of the results 
The comparison results in GeneCov, NB, gene average, relevance, 
recovery, and biclusters with a p − value < 0.01 are presented in 
Table 9. 

Gene enrichment analysis 
The biological significance of OAEVOB’s results is analyzed using 
Gene Set Enrichment Analysis (GSEA), a method for identifying 
overrepresented gene classes associated with different pheno-
types (different organism growth patterns or diseases) [54, 55]. 
The P-value is calculated by comparing the observed distribution 
to the null distribution, considering diagnostic/phenotypic labels, 

and adjus-ting for multiple hypothesis testing. GSEA evaluates the 
biological significance of the results achieved. 

A strategy for tackling this analysis is to compute the Bon-
ferroni Correction (BC) or BC adjusted (BCA). We also employed 
the False Discovery Rate (FDR), a reliable and widely accepted 
method, to address the false relationships detected by BCA. The 
enriched modules reported in this paper fulfilled BCA and FDR. 
We considered the sixty biclusters obtained by OAEVOB, ARBic, 
and RecBic. Concerning FABIA, BP-EBA, and SSLB, we considered 
their reported biclusters. 

Due to Tissp’s dataset nature, we focus on identifying bio-
logical functions within a specific tissue. Concerning Cocel, we 
focused on identifying genes related to any cancer type. How-
ever, we will include other essential functions in this analy-
sis, providing a comprehensive understanding of the datasets. 
Tables 10, 11, and  12 show the enriched modules identified by 
OAEVOB in Tissp, Cocel, and Mouse, respectively, with colors 
assigned for easier visualization of biological functions within 
the modules. Table 11 shows 16 enriched modules with testis 
cancer; therefore, the color assigned to this biological function 
is the most frequent. In Table 12, no color is repeated, indicating 
that no biological function enriches more than one module. In 
Figs 10 and 11, we used the enrichplot R library to illustrate the 
enriched modules identified by OAEVOB in Cocel and Mouse, 
respectively [56]. 

Tables 13, 14, and  15 show the enriched modules identified by 
RecBic in Tissp, BP-EBA in Cocel, and SSLB in Cocel, respectively. 

Figure 12 shows the average number of genes included in the 
found modules. Figure 13 shows the number of biclusters with a 
p − value < 0.01. 

We include a comprehensive analysis of the enriched biclusters 
found by OAEVOB in Tissp, Cocel, and Mouse. In Tissp, we found 
relevant genes related to tissue-specific in module 2. ABCC3 and 
ABCC4 are crucial for detoxification and drug metabolism in the 
Kidney, involved in the transport of organic anions across cellular 
membranes, and their role in neurotransmitter transport and 
drug excretion, respectively [57]. In module 23, the main functions 
are related to metabolism and detoxification in genes CYP1A1 
and AGMAT, which are involved in the detoxification of harmful 
compounds and the regulation of lipid metabolism, with key roles 
in the liver and kidney. In module 28, the genes BCL9, ZEB2, and  
PITX3 have relevance in cellular development and differentiation 
and are involved in cellular signaling pathways that regulate 
development, differentiation, and survival, particularly in tissues 
like the nervous system, lungs, and muscles. 

In Cocel’s module 1, we found biological functions in genes 
related to metastasis and migration in cancer. SMAD2 is part 
of the TGF − β signaling pathway and is involved in regulat-
ing cell migration, differentiation, and metastasis [58]. In can-
cer, the TGF − β pathway can switch from a tumor suppressor 
to a pro-metastatic role. In addition, upregulation of SNHG15 
is linked to poor prognosis in cancers like colorectal, breast, 
and gastric cancer, promoting proliferation and metastasis [59]. 
Mutations in GALNT12 have been linked to colorectal cancer 
due to altered glycosylation patterns affecting cell signaling [60]. 
In module 2, functions related to DNA damage response and 
repair are found. Mutations in ATM contribute to cancer devel-
opment by impairing the cell’s ability to repair DNA [61]. Muta-
tions in MRE11 can impair DNA repair mechanisms and lead 
to genomic instability [62]. Furthermore, the cancer relevance 
of overexpression of ABCC10 is associated with resistance to 
chemotherapy, particularly in breast, lung, and ovarian cancers. 
ABI2 is implicated in processes related to metastasis in lung and
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Figure 9. Gene coverage comparison in the six datasets (1 indicates that all genes were selected in any generation, and 0 is the opposite, which is the 
worst value in this context). OAEVOB achieved a GeneCov greater than 0.8 in all the datasets, and obtained the greatest GeneCov in Tissp, Cocel, Ustilago, 
BCancer, and GPL5175, only overcome by RecBic, BP-EBA, and ARBic, in Mouse. In contrast, SSLB and FABIA obtained the lowest GeneCov. 

Table 9. Summary of outcomes of the experiments performed to benchmark the state-of-the-art algorithms of the specialized literature 

Test SSLB BP-EBA FABIA OAEVOB RecBic ARBic 

Gene coverage 0.46 ± 0.05 0.75 ± 0.01 0.4 ± 0.03 0.91 ± 0.01 0.87 ± 0.01 0.88 ± 0.01 
Number of biclusters 35.66 ± 0.16 51.33 ± 3.16 9.83 ± 1.41 60 ± 0.0 60 ± 0.0 60 ± 0.0 
Average genes 21.76 ± 1.12 11.55 ± 1.21 6.61 ± 0.59 140.14 ± 4.01 91.89 ± 2.19 95.69 ± 1.87 
Relevance 0.1 ± 0.03 0.17 ± 0.05 0.32 ± 0.01 0.62 ± 0.01 0.32 ± 0.05 0.84 ± 0.0 
Recovery 0.08 ± 0.03 0.14 ± 0.06 0.32 ± 0.02 0.6 ± 0.01 0.33 ± 0.04 0.83 ± 0.0 
Bic. P-value < 0.01 4.66 ± 0.2 6.29 ± 0.31 0.93 ± 0.19 17.84 ± 0.47 11.96 ± 0.55 12.24 ± 0.51 

The highest result shows the best performance. The best result is in bold. 

breast cancer, by influencing cell motility and invasion. In mod-
ule 6, disruption of lysosomal function in BLOC1S5 is associated 
with tumor growth, metastasis, and resistance to therapy. Altered 
lipid metabolism, often driven by INSIG2, supports rapid cell 
proliferation. Dysregulation of XIST can alter epigenetic land-
scapes, leading to tumor progression, particularly in sex-specific 
cancers. 

In module 21, ALDH1B1 is often used as a marker for cancer 
stem cells, and its expression is associated with poor prognosis, 
particularly in liver and colon cancer. BCL11B is implicated in 
the development of T-cell acute lymphoblastic leukemia (T-ALL) 
and other lymphomas, and its expression may influence tumor 
progression. In module 39, CEP164 is a protein involved in the 
formation and function of the centrosome, which is critical for 
proper cell division. Alterations in CEP164 are associated with 
defects in mitosis, leading to aneuploidy, a common feature in 
cancer cells. In module 42, dysregulation of MAP2K2 is common 
in melanomas, promoting uncontrolled cell proliferation and 
resistance to cell death. Alterations in SMAD9 function can 

lead to the disruption of TGF − β signaling, contributing to 
cancer progression by promoting cell proliferation and inhibiting 
apoptosis. TP53BP1 is crucial for maintaining genomic stability. 
Mutations or deletions of TP53BP1 may lead to defective DNA 
repair, contributing to cancer development and resistance to 
therapy. These grouped genes reflect a wide range of functions 
essential for regular cellular processes and their dysregulation 
or mutations are associated with a variety of cancers, often 
contributing to cell cycle deregulation (CCNB2, MCM7, CDK20), 
metastasis and migration (PLXND1, SMAD2), resistance to apop-
tosis (BMF, CASP6, TRIM66), DNA damage repair, and genomic 
instability. These genes may serve as potential biomarkers for 
cancer diagnosis, prognosis, and therapy. 

Module 35 of Mouse contains a broad range of molecules 
involved in brain function, neuroplasticity, and learning. Synpr 
and Capsl are implicated in synaptic vesicle trafficking and neu-
rotransmitter release, playing key roles in synaptic plasticity and 
learning [63]. Netrin1 is involved in axon guidance and synapse 
formation, which are crucial for brain development and function
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Figure 10. Module 6, identified by OAEVOB in Cocel, has until 400 genes involved in the biological functions and a p − value < 0.01. Many biological 
functions are linked (lines) between them, which indicates a strong relationship in the module. 

[ 64]. Module 45 has biological functions related to neurotransmit-
ter synthesis and signaling. Th is essential for the synthesis of 
dopamine, a critical neurotransmitter involved in motor control, 
reward processing, and cognitive functions. Ddc is involved in the 
conversion of L − DOPA to dopamine and serotonin, impacting 
mood regulation and motor function. Grin1 and Grin3a encode 
subunits of the NMDA receptor, which is critical for synaptic 
plasticity, learning, and memory formation. 

Discussion 
In this article, we develop a novel algorithm for identifying biclus-
tering in gene expression matrices. We use six datasets exten-
sively studied in the literature for pattern recognition in computa-
tional algorithms, as there is no gold standard for benchmarking 
biclustering algorithms. The Tissp dataset has been analyzed in 
[65–68], Cocel has been used in [69, 70], Mouse in [71–74], Ustilago 
in [38], BCancer in [39], and GPL5175 in [29]. These datasets 
have different structures and provide valuable information from 

different sequencing gene expression data, making it more chal-
lenging to identify diverse patterns compared to SDs. Analyzing 
real datasets is more challenging but yields more precise results. 

It was identified that all datasets analyzed with OAEVOB 
obtained biclusters with the highest correlations, with a fitness 
greater than 0.52 and a MI greater than 0.99 (Table 2). These 
results demonstrate that the correlations and MI achieved by 
OAEVOB in these biclusters are statistically significant, surpassing 
the threshold of 0.5. 

In Fig. 8, we show that OAEVOB outperforms ARBic, RecBic, 
SSLB, BP-EBA, and FABIA in relevance and recovery scores in two 
SDs with implanted biclusters with an overlapping level of 50 ∗ 50 
and a noise level of 0.2, showing that OAEVOB is robust to noise 
and overlapping. OAEVOB obtained very competitive results with 
average recovery and relevance scores of 0.6 and 0.62, respectively. 
OAEVOB outperformed RecBic, SSLB, BP-EBA, and FABIA on aver-
age, only outperformed by ARBic. 

Table 7 shows that OAEVOB obtained a correlation of approx-
imately 0.4 in SDs generated using normal, Cauchy, and
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Figure 11. Module 60, identified by OAEVOB in Mouse, obtaining a p − value < 0.01. Many biological functions are linked (lines) between them, which 
indicates a strong relationship in the module. 

Figure 12. OAEVOB obtained the highest average number of genes in Tissp, Cocel, Ustilago, BCancer, and GPL5175. On the other hand, RecBic had the 
highest result in Mouse. BP-EBA and FABIA had the lowest average number of genes across all datasets. 
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Figure 13. OAVEOB obtained the greatest number of biclusters with a p − value < 0.01 in Tissp, Cocel, Ustilago, BCancer, and GPL5175. RecBic reported 
the greatest result for Mouse. Conversely, FABIA obtained the lowest number of biclusters across all datasets. 

Table 10. Biological function analysis in Tissp using OAEVOB. 
The identified biological functions of each module are 
highlighted in distinct colors to visualize the ones that appear 
more frequently quickly. In cases where the module has no 
enriched biological function in the characteristic indicated in 
the column, a ‘-’ is displayed 

Module Tissue-specific Biological function Molecular 
function 

2 Kidney Stress response -
4 Intestine - -
5 Endometrium - -
8 - Angiogenesis -
9 - Growth regulation Helicase 
12 - mRNA processing -
14 - Autophagy -
14 - DNA damage, repair Chaperone 
17 Epididymis Host-virus interaction -
23 Kidney Fertilization Antioxidant 
27 Tongue - Oxidoreductase 
28 Tongue Inflammatory response RNA-binding 
30 Intestine - -
37 Tongue Neurogenesis Hydrolase 
42 Tongue mRNA splicing -

binomial distributions, which is not statistically significant (less 
than 0.5). This suggests that OAEVOB obtained the expected 
results, as no significant relationship was expected in these 
SDs. 

In Tissp, Cocel, Ustilago, BCancer, and GPL5175, OAEVOB 
obtained higher GeneCov than all state-of-the-art algorithms 
(Fig. 9). In Mouse, BP-EBA achieved the highest GeneCov. RecBic 

Table 11. Biological function analysis in Cocel using OAEVOB. 
The identified biological functions of each module are 
highlighted in distinct colors to visualize the ones that appear 
more frequently quickly. In cases where the module has no 
enriched biological function in the characteristic indicated in 
the column, a ‘-’ is displayed 

Module Cancer Protein Biological function 

1 Testis - -
2 Testis Cardiovascular disease -
4 Testis Plasma proteins -
5 - - Adaptive immunity 
6 Testis Cancer-related genes Adaptive immunity 
10 Testis - -
13 - Cancer-related genes Immunity 
14 - - Adaptive immunity 
16 Testis - Adaptive immunity 
17 - Cancer-related genes -
18 Testis - -
19 Testis - -
21 Testis Predicted secreted protein -
23 Testis Predicted intracellular protein -
28 Testis - -
39 Testis Disease related genes Immunity 
42 Testis Cancer-related genes Adaptive immunity 
46 Testis Cancer-related genes -
47 - Cancer-related genes -
48 Testis FDA drug targets Adaptive immunity 
50 Testis - -

and ARBic outperformed BP-EBA, FABIA, and SSLB on Tissp, 
Cocel, Ustilago, and GPL5175. FABIA and SSLB showed the poorest 
performance in GeneCov. OAEVOB’s exploration is notably more 
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Table 12. Biological function analysis in Mouse using OAEVOB. 
The identified biological functions of each module are 
highlighted in distinct colors to visualize the ones that appear 
more frequently quickly. In cases where the module has no 
enriched biological function in the characteristic indicated in 
the column, a ‘-’ is displayed 

Module Biological function Molecular function 

35 Regulation of kidney 
development 

ERK1, ERK2 cascade 

45 Renal-tubule development MAPK cascade 
58 Epithelial cell differentiation Signaling pathway 
60 Cellular respiration Mitochondrial respiratory 

Table 13. Biological function analysis in Tissp using RecBic. In 
cases where the module has no enriched biological function in 
the characteristic indicated in the column, a ‘-’ is displayed 

Module Tissue-specific Biological function Protein 

1 - Heart contraction Protein 
polyubiquitination 

4 Epidermis Regulation of 
membrane potential 

Protein-coupled 
receptor signaling 
pathway 

8 Epidermis Epithelial cell 
proliferation

-

9 - Regulation of blood 
circulation 

MAPK cascade 

21 - Cardiac and striated 
muscle tissue 
development 

Activation of protein 
kinase activity 

25 Epidermis Heart process -

Table 14. Biological function analysis in Cocel using BP-EBA. In 
cases where the module has no enriched biological function in 
the characteristic indicated in the column, a ‘-’ is displayed 

Module Biological function Protein 

4 Myosin phosphatase Serine/threonine phosphatase 
6 RNA splicing Ubiquitin conjugating enzyme 
15 Phosphatase activity -
24 AMP metabolic process -

Table 15. Biological function analysis in Cocel using SSLB. In 
cases where the module has no enriched biological function in 
the characteristic indicated in the column, a ‘-’ is displayed 

Module Biological function Molecular function 

1 Golgi vesicle transport Organelle fusion 
2 Regulation of binding -
36 Regulation of apoptotic signaling Ras signal transduction 

extensive, indicating that all potential relationships were included 
and analyzed at some point. 

The user specifies the NB value in OAEVOB, RecBic, and BP-EBA. 
OAEVOB, ARBic, and RecBic fulfilled the user’s request for all six 
datasets (Table 9). BP-EBA retained less than sixty biclusters, as 
it includes a final step to filter the NB, thereby demonstrating its 

limitations. SSLB and FABIA assign the NB internally but do not 
meet the user’s minimum NB requirement. 

Table 9 shows that OAEVOB outperformed the state-of-the-
art algorithms in GeneCov, average genes, and biclusters with 
a p − value < 0.01, and obtained very competitive results in 
relevance and recovery scores, which are classical evaluations in 
the specialized literature. This suggests that OAEVOB is highly 
competitive in analyzing gene expression data from diverse 
sources. 

Regarding the GSEA results, OAEVOB identified genes related to 
specific tissues such as the tongue, kidney, intestine, endometrium, 
and epididymis in Tissp in the enriched modules (Table 10). 
Therefore, OAEVOB effectively distinguished and grouped tissue-
specific genes. OAEVOB also detected biological functions related 
to stress response, neurogenesis, RNA binding, and host–virus 
interaction. The enriched modules in Tissp contain an average 
of 181 genes, and in most biclusters, the adjusted P-value is less 
than 0.01 (Fig. 13). 

In Cocel (Table 11), we focused on identifying essential 
cancer-related biological functions. OAEVOB identified testis 
cancer genes in seventeen enriched modules, distinguishing 
and grouping cancer-related genes. Biological functions were 
also found in cancer-related genes, cardiovascular disease, and 
immunity. Enriched modules include an average of 158 genes, 
with most biclusters having a p − value < 0.01. In  Fig. 10, the  
enrichplot R library is used to illustrate the enriched module 6 
identified by OAEVOB. 

In Mouse, OAEVOB identified functions that regulate kidney 
development, epithelial cell differen-tiation, cellular respiration, 
and signaling pathways (Table 12). On average, these biclusters 
contain 21 genes, with an adjusted p − value < 0.01 in two 
biclusters. Figure 11 shows an enriched bicluster. 

In Tissp, RecBic detected genes epidermis (three modules) and 
heart-related biological functions (Table 13). Most enriched mod-
ules obtained an adjusted p−value < 0.01. In comparison, OAEVOB 
identified 10 enriched modules with specific tissues. In Cocel, 
RecBic found enriched modules related to the biological functions 
of cardiovascular disease and cancer-related genes, containing 
an average of 96 genes. None of the modules found by RecBic 
are related to a specific cancer type. In Mouse, the modules are 
primarily involved in RNA splicing and brain-related functions. 
Compared to OAEVOB, SSLB, BP-EBA, and FABIA, these modules 
have the highest average number of genes and modules with an 
adjusted p − value < 0.01. ARBic identified biological functions 
unrelated to specific tissues and any cancer type in Tissp and 
Cocel, respectively. ARBic detected enriched modules related to 
transduction and signaling in Mouse. 

In Tissp, BP-EBA found biological functions associated with 
tissue migration and protein depoly-merization unrelated to 
any specific tissue. Four modules contained two genes and an 
adjusted p − value < 0.01. In Cocel, the enriched modules are 
related to RNA splicing and phosphatase activity (Table 14), 
unrelated to any cancer type. The modules contained the fewest 
genes, and only three modules obtained an adjusted p − value < 
0.01. In Mouse, aggressive behavior and tumor necrosis were 
the biological functions found, and most obtained an adjusted 
p − value < 0.01. 

In Tissp, SSLB and ARBic identified biological functions unre-
lated to specific tissues, such as the regulation of autophagy and 
peptide hormones. In Cocel, SSLB and ARBic did not identify any 
cancer type (Table 15). Thirteen enriched modules, mainly related 
to brain signaling, were detected in Mouse (surpassed only by 
RecBic).
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FABIA detected no enriched modules in Cocel and only one in 
Tissp and Mouse, unrelated to any specific tissue or cancer. 

Conclusions and future work 
In OAEVOB’s initial exploration, biclusters with many genes are 
identified, comprising highly correlated genes of substantial size. 
OAEVOB selects a specific seed for each bicluster. The JC computa-
tion accurately detects and discards similar biclusters to improve 
the uniqueness and quality of resulting biclusters. Additionally, 
adjusting the ηc and mutation probability values enhances the 
biclusters’ fitness, enabling OAEVOB to find diverse solutions 
when necessary and exploit biclusters with high correlations. 

In [23], it is discussed how ACV can detect biclusters’ scale, 
shift, and scale-shift patterns and how ACV and VEt correlate 
highly with gene ontology. We compute ACV using similarity 
measurements such as Pearson correlation, Biweight midcorre-
lation, distance correlation, and MI to strengthen the detection of 
scale and shifting patterns. This is useful for analyzing complex 
biological systems, where elements have multiple functions and 
are functionally diverse, making them more likely to interact 
nonlinearly. 

Our novel approach includes an online-adjustment component 
that changes dynamically to create offspring. Online-adjustment 
balances offspring diver-sity based on fitness, allowing OAEVOB 
to identify high-quality solutions while maintaining the neces-
sary randomness for exploration. If mutation and offspring diver-
sity are not adequately regulated, the algorithm may continue 
to explore excessively. This can result in slower convergence 
and unnecessary computations, especially in large and complex 
search spaces, such as those encountered in RNA-seq datasets. 
A lower mutation rate and reduced offspring diversity help the 
algorithm fine-tune solutions and converge to the optimal solu-
tion. Higher mutation rates and different offspring promote diver-
sity, preventing stagnation and avoiding suboptimal areas. This 
balance sustains genetic diversity and enhances the algorithm’s 
robustness in complex fitness landscapes, enhancing the overall 
search process. Using MIXRNG helps avoid the bias imposed by 
employing a single RNG. 

OAEVOB efficiently finds significant modules in gene expres-
sion data. The GSEA results show that OAEVOB identifies many 
modules containing genes related to cancer types and specific 
tissues. OAEVOB found enriched modules with the highest num-
ber of genes in Tissp, Cocel, Ustilago, BCancer, and GPL5175. In 
Mouse, it is only outperformed by RecBic and SSLB (Fig. 12). This 
is essential for identifying more genes associated with specific 
cancer types and tissues that were previously unknown and 
potentially advancing our understanding of cancer biology. Addi-
tionally, OAEVOB outperforms the state-of-the-art algorithms in 
Tissp, Cocel, Ustilago, BCancer, and GPL5175, as it identifies the 
highest number of enriched modules with an adjusted p−value < 
0.01 (Fig. 13). 

We conclude that OAEVOB highly differentiates genes associ-
ated with specific tissues in Tissp and cancer-related genes in 
Cocel; however, RecBic, ARBic, SSLB, BP-EBA, and FABIA cannot 
equally differentiate these genes. 

Additionally, OAEVOB identifies enriched narrow biclusters, 
which consist of a small number of conditions, and also broader 
biclusters, which include many conditions. While RecBic is partic-
ularly effective at finding high-quality narrow biclusters [29], and 
ARBic specializes in identifying high-quality broader biclusters, 
OAEVOB shows superior performance than RecBic and ARBic in 
both bicluster sizes. OAEVOB outperforms RecBic in datasets with 

less and more than 500 columns. This indicates that OAEVOB also 
surpasses ARBic in datasets containing less than 500 columns. 
OAEVOB’s performance surpassed RecBic, ARBic, BP-EBA, FABIA, 
and SSLB in SDs to find noisy and overlapped biclusters obtaining 
higher recovery and relevance scores. Most biclustering algo-
rithms, in general, perform comparably or exhibit inferior results 
compared to random approaches on human datasets due to 
a high incidence of false positives [75]. Therefore, identifying 
concealed relationships and patterns within human datasets is 
more challenging, as these datasets tend to be more complex 
than simulated ones. OAEVOB demonstrates superiority in iden-
tifying complex enriched narrow and broader biclusters in our 
comparison. Furthermore, OAEVOB’s complexity remains highly 
competitive, utilizing Pearson and biweight midcorrelation with a 
complexity of O(n2). 

Exploring different datasets in structure is critical to improving 
OAEVOB’s performance. Implementing a parallelized architecture 
to run OAEVOB on a GPU might significantly reduce computa-
tional time. Our future work will analyze unique modules of genes 
that are not predicted by state-of-the-art algorithms. Future work 
also includes analyzing overlapping genes to identify novel rela-
tionships and patterns, performing various crossover types, and 
developing a multi-objective algorithm with external archivers to 
identify conflicting similarity measurements. 

Our paper provides a gateway for developing novel biclustering 
algorithms. Therefore, bioinformatics can use OAEVOB to discover 
novel and significant biological insights from gene expression 
data, making it a valuable tool for the field. 

Key Points 
• OAEVOB, a novel biclustering algorithm. 
• OAEVOB detects significant modules in microarray and 

RNA-seq datasets. 
• OAEVOB identifies significant modules in scRNA-seq. 
• Online-adjustment helps form meaningful biclusters. 
• OAEVOB outperforms ARBic and RecBic in finding signif-

icant biclusters. 
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