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Abstract

Transcriptional factors (TFs) in bacteria play a crucial role in gene regulation by binding to specific DNA sequences, thereby assisting
in the activation or repression of genes. Despite their central role, deciphering shape recognition of bacterial TFs-DNA interactions
remains an intricate challenge. A deeper understanding of DNA secondary structures could greatly enhance our knowledge of how TFs
recognize and interact with DNA, thereby elucidating their biological function. In this study, we employed machine learning algorithms
to predict transcription factor binding sites (TFBS) and classify them as directed-repeat (DR) or inverted-repeat (IR). To accomplish this,
we divided the set of TFBS nucleotide sequences by size, ranging from 8 to 20 base pairs, and converted them into thermodynamic
data known as DNA duplex stability (DDS). Our results demonstrate that the Random Forest algorithm accurately predicts TFBS with an
average accuracy of over 82% and effectively distinguishes between IR and DR with an accuracy of 89%. Interestingly, upon converting
the base pairs of several TFBS-IR into DDS values, we observed a symmetric profile typical of the palindromic structure associated with
these architectures. This study presents a novel TFBS prediction model based on a DDS characteristic that may indicate how respective
proteins interact with base pairs, thus providing insights into molecular mechanisms underlying bacterial TFs-DNA interaction.
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Introduction
Transcription factors (TFs) constitute a class of critical proteins
regulating many biological events. By discerning specific DNA-
binding sites within the cellular milieu, TFs wield control over
the gene expression patterns within organisms [1], impacting
many intrinsic and extrinsic cellular processes [2, 3]. The DNA-
binding sites of TFs are commonly represented as motifs through
position weight matrices. Determining and characterizing how
TFs recognize these motifs are crucial for understanding the
regulatory functions of this class of proteins [4]. In bacteria,
the most common DNA-binding structure identified so far is
the helix-turn-helix (HTH) [5], allowing them to recognize DNA
binding sites characterized by an inverted repeat (IR) architecture,
resulting in palindromic nucleotide sequences. This arrangement,
exemplified in IcIR, TetR, and LacI, typically involves TFs forming
dimers or tetramers [6, 7]. These protein complexes interact with
DNA using different HTH subunits, leading to a head-to-head
configuration. In contrast, binding to sites with direct repeats (DR)
architecture requires TFs to adopt a head-to-tail configuration

[8], as described for BldC [9], Xis [10], and Atox1 [11], among
others.

It is well-established that TFs recognize specific sequences
upstream the transcription start site to regulate (activate or
repress) gene expression [12]. However, the situation is further
complicated by the ability of proteins to bind to DNA through
various modes [13]. Understanding the role of DNA secondary
structures can significantly enhance our knowledge about how
this class of proteins recognizes and interacts with DNA, thereby
elucidating their biological function. Techniques like one-hot
encoding (OHE), where each unique character is assigned a
distinct numerical ID, have been utilized in artificial intelligence
models [14]. However, the numerical variables generated using
these methods often lack direct biological significance, resulting
in the limited interpretation of their biological role.

In the last decade, several databases have been developed
to provide helpful information about DNA-binding motifs and
genomic binding sites, such as RegulonDB [15], JASPAR [16],
CollecTF [17], TRANSFAC [18], and UniPROBE [19]. Simultaneously,
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diverse approaches have been developed and implemented for
the prediction and analysis of transcription factor binding sites
(TFBS), focusing on methods based on artificial intelligence
[20]. In this regard, FCNsignal [21] employs fully convolutional
neural networks (FCN) for predicting TF binding signals; whereas
DeepBind [22], DESSO [23], and DeepSea [24] utilize convolutional
neural networks (CNN). Additionally, DanQ [25] combines
CNN with recurrent neural networks (RNN) to predict TFBS.
While various methods based on deep learning have shown
satisfactory results in predicting TFBS [26], models rooted in
traditional machine learning (ML) approaches remain limited
[27]. Implementing ML models enables accurate prediction and
classification of TFBS and provides interpretability. The capacity
to elucidate the outcomes of a model offers valuable insights
into the structural attributes of protein-DNA binding regions,
facilitating the delineation of the model’s decision patterns. In
essence, this entails comprehending the rationale behind its
predictions or classifications derived from the input data, thus
providing information about the essential characteristics the
model is considering.

Considering the central role that TFs play in regulatory mech-
anisms, this study aims to utilize ML methodologies to develop
a predictive model for identifying TF binding sites. Specifically,
the model aims to differentiate between true TFs and non-TFs
based on structural and thermodynamic parameters in order to
identify the precise locations where regulatory proteins interact
to positively or negatively modulate gene expression.

Additionally, we aim to investigate the structural variances
within these regions, facilitating the development of a secondary
ML model to differentiate whether a given region exhibits a direct
or IR architecture. Furthermore, the robustness of our predictions
is substantiated by structural model, highlighting the capability
of our ML approach not only in identifying and classifying TFBSs
but also points to a correlation between the features used to train
the model with the specific mode of interaction employed by the
respective TF.

Materials and methods
Dataset preparation and general procedure
This study acquired a dataset of 3098 TFBS sequences, which
are recognized by 159 TFs from the bacterium Escherichia coli K12
from the RegulonDB database [15]. Furthermore, an additional
set of 5452 bacterial TFBS sequences was obtained from the
CollecTF database [17]. To ensure the integrity of the dataset,
redundant sequences were identified and removed, totaling 559
and 3054 duplicate TFBS sequences from RegulonDB and CollecTF,
respectively. Detailed information on sequence distribution by TF
is provided in Supporting Information Tables S1 and S2.

Random sequences were generated for each TFBS to construct
a negative dataset of sequences that did not represent TFBS while
maintaining consistent length sizes and nucleotide composition.
Given that a single TF can recognize multiple binding sites [28],
resulting in TFBS of varying sizes, we employed the MEME pro-
gram [29] for sequence alignment to ensure length uniformity.
Subsequently, graphical representations of the sequences were
generated using the WebLogo server [30].

Converting TFBS sequences into numerical
features
The TFBS sequences, represented by nucleotides adenine (A),
thymine (T), cytosine (C), and guanine (G), have been converted
into numerical information using several parameters. These

parameters can be classified as either structural or thermody-
namic. Structural parameters include twist [31], bend [31], major
groove width [31], major groove depth [31], major groove size [32],
and persistence length [33]. On the other hand, thermodynamic
parameters encompass enthalpy [34], entropy [34], free energy
[35], stacking energy [36], and DNA duplex stability (DDS [37]). In
this study, we emphasize the DDS metric. AT nucleotides are
bound together by two hydrogen bonds while GC consists of
three. This physicochemical difference results in distinct free-
energy profiles, and has been employed as good descriptors
of interaction between proteins and DNA. This is the case of
promoter sequences, which interact with RNA polymerase to
initiate transcription. Promoter sequences have been described as
per their levels of DDS, being distinguishable from other genomic
regions across the three domains of life [38–41]. For each TFBS
sequence, a DDS value was assigned to every dinucleotide in the
sequences. For instance, AA, CG, and TC were converted to -1.00,
-2.17, and -1.30, respectively. In addition, we display the code for
converting all 16 possible combinations of dinucleotide pairs in
the DDS values (see Table S3 in Supporting Information).

Machine learning models
A comprehensive screening for the classification task (TFBS or
non-TFBS) was conducted employing various classifiers: Random
Forest (RF), stochastic gradient descent (SGD), support vector clas-
sifier (SVC), linear support vector classifier (LinearSVC), AdaBoost,
Gradient Boosting, XGBoost and Decision Tree (DT) classifiers. All
algorithms, except for XGBoost, were implemented using scikit-
learn version 0.24.2 [42]. To ensure consistency, we maintained
the hyperparameters at their default values across all datasets.
Each model underwent validation through an 80-20 train-test split
under a 10-fold cross validation process to ensure every data
point is covered both in the train and test steps. The models were
evaluated based on their accuracy (ACC), precision (Prec), recall
(Rec), F1-score (F1), and area under the ROC curve (AUC). Finally,
the best performing algorithm, i.e. highest accuracy, precision,
recall, F-1 score, and AUC, was selected.

In addition, a second model was developed to predict the
category of TFBS, distinguishing between DR and IR sequences.
However, due to the substantial disparity in data volume between
both classes, creating an imbalanced dataset, we split the classi-
fication task into two subtasks: DR versus non-DR, and IR versus
non-IR. Among the dataset of 3204 sequences, only 316 were
categorized as TFBS-DR, while 738 sequences from the TFBS-IR
class were selected. The negative dataset for these two substasks
were random sequences. We then trained a model to distinguish
between TFBS-DR and TFBS-IR sequences. For this purpose, we
utilized 316 TFBS-DR sequences and 738 TFBS-IR sequences. We
also utilized SHapley Additive exPlanations (SHAP v. 0.42.1) [43]
to map the decision patterns of our models. This approach facil-
itated the identification of nucleotide positions that significantly
contribute to differentiating a TFBS-DR from a TFBS-IR.

The methodology developed in this work is illustrated in
Fig. 1, depicting the sequential steps undertaken to achieve our
research objectives. The dataset containing the train/test data
and sequences used in this work is publicly available at https://
github.com/farias-ab/TFBS-Prediction.git.

Results and discussion
TFBS are well represented by DDS
Initially, we carried out a study to evaluate the impact of
converting TFBS nucleotide sequences into numerical values
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Figure 1. Schematic illustrating the workflow for acquiring, training, validating, and interpreting the predictive model designed to TFBS.

related to thermodynamic or structural data. In this preliminary
assessment, we focused on sequences of Escherichia coli K12
obtained from the RegulonDB database. Thus, we partitioned
our dataset based on the length of nucleotide base pairs (bp) to
ensure uniform dimensions across the data. More than 92% of
the dataset consists of TFBS with size ranging between 8 and 20
bp (see Supplementary Fig. S1). After partitioning our dataset,
TFBS sequences spanning 12 to 15 bp were converted into both
structural and thermodynamic variables for training the ML
model, employing the RF algorithm. Validation metrics for all
parameters utilized are depicted in Fig. 2.

We observe that thermodynamic features, particularly DDS
and enthalpy, appear to more accurately represent TFBS, with
average accuracy values of 0.75 and 0.76, respectively. In con-
trast, structural features exhibit slightly lower validation metrics,
especially size and length, where the average accuracy values
were only 0.65 and 0.69, respectively. However, width presented
an average accuracy value of 0.75, similar to DDS, indicating that
it is the best structural descriptor for TFBS. It is important to
highlight that DDS has been successfully used to predict DNA
binding process in prokaryotic cells (archaeal and bacterial) [38,
44], suggesting that they are reliable descriptors to represent
protein-DNA binding events to be exploited by ML models.

In the initial screening to determine the type of descriptor to
be used in the work, we observed that the overall quality of the
model was intermediate, with accuracy ranging around 70–75%.
This indicated the need to enhance our performance in predicting
TFBS. To address this, we expanded our dataset by incorporating
TFBS sequences from other organisms sourced from the CollecTF
database, thereby enriching our training set with additional data.
Table 1 presents the influence of each database on the model’s
predictability. The nucleotide sequences with length sizes ranging
from 13 to 16 bp were separated into RegulonDB data and Col-
lecTF data, as illustrated in the Fig. S4. The model performance
improves significantly when utilizing the CollecTF dataset, partic-
ularly for the 13 bp and 16 bp models. This improvement is likely

attributable to the larger volume of data provided by CollecTF,
which enhances the model’s ability to generalize across diverse
TFBS. Recent work has evaluated the impact of data quantity
on the behavior of ML models [45–47], highlighting how the size
and quality of training datasets can significantly influence the
predictability and generalization capabilities of these models. In
addition, Bailly et al. demonstrated that, in the scenarios studied,
ML models were less influenced by dataset size and consistently
outperformed deep learning models [48].

Hence, we opted to select DDS as a feature for training ML
models, we investigated whether the profile of DDS values from
a TFBS is different from a randomly generated sequence (see Fig.
S2 in Supporting Information). We noticed significant differences
between the TFBS sequences compared with random sequences,
except for the subset with 9 bp.

Figure 3 presents the individual (gray line) and the average
(black line) of DDS profile of eight TFBS. The logo plot reveal
notable symmetrical patterns in specific TFBS, particularly the IR
motifs. This symmetry is evident in the average value profile of
the 57 Cra TFBS sequences, where a distinct valley is discernible
in the central region, marked by the conserved dinucleotide CG
(Fig. 3A). Similar symmetrical signals are evident in the average
value profile of the 28 GalR TFBS sequences, characterized by one
valley composed of conserved dinucleotide CG (Fig. 3B). Moreover,
the average value profile of the 30 GalS TFBS sequences reveals
one valley consisting of GC (Fig. 3C). Additionally, we observed
in these three cases, two well-conserved peaks composed by AA
and TT dinucleotide, positioned in proximity to this valley. On
the other hand, the 19 sequences of GntR TFBS (Fig. 3D) exhibit
distinct profiles, lacking a well-conserved valley composed of GC.
Instead of AA and TT, as observed previously, two highly con-
served peaks composed of TA and TA are evident at positions 5-6
and 11-12.

It is noteworthy mentioning that all TFBS depicted in Fig. 3A-D
belong to the same family. These observations raise the possibility
that these symmetrical patterns observed in DDS plot might
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Figure 2. Evaluation of structural and thermodynamic features of TFBS. Genomic sequences were converted into features for training an ML model
using the Random Forest algorithm. Performance metrics include accuracy (A), precision (B), recall (C), and F1 score (D).

correlate with the mechanisms of TFBS-IR recognize their TFs
[49]. In contrast, a distinct profile was observed concerning the
TFBS-DR (Fig. 3E-H), lacking the pronounced and poorly preserved
valleys observed in IR motifs. Fig. 3E illustrates the average value
profile of the 10 AgaR TFBS sequences, revealing two valleys at

the ends formed by the moderately conserved CG dinucleotides
(positions 2-3 and 12-13). For the OmpR TFBS, no valleys were
discerned. However, the average value profile of the 25 sequences
exhibited two peaks comprising moderate (values around 1 bit)
conserved dinucleotides, TT and AA (Fig. 3F). Notably, the average
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Table 1. Comparison of RF model performance using RegulonDB and CollecTF datasets. Performance metrics including accuracy (ACC),
precision (Prec), recall (REC), F1-score, confusion matrices, and area under the ROC curve (AUC) are provided for each dataset,
highlighting the differences in classification results when using RegulonDB versus CollecTF across different sequence lengths.

Model 13bp Model 14bp Model 15bp Model 16bp

RegulonDB CollecTF RegulonDB CollecTF RegulonDB CollecTF RegulonDB CollecTF

Dataset TFBS, nonTFBS 631, 631 1366, 1336 411, 412 434, 440 258, 259 556, 556 173, 173 112, 118
ACC 0.7747 0.9760 0.8121 0.9086 0.8750 0.9417 0.7857 0.9348
Prec 0.7728 0.9760 0.8133 0.9093 0.8720 0.9413 0.7891 0.9361
REC 0.7732 0.9758 0.8119 0.9087 0.8766 0.9437 0.7903 0.9265
F1-score 0.7730 0.9759 0.8119 0.9085 0.87356 0.9415 0.7857 0.9308
Confusion matrix [[87 28]

[29 109]]
[[250 7]
[6 278]]

[[70 13]
[18 64]]

[[78 10]
[6 81]]

[[40 5]
[8 51]]

[[100 3]
[10 110]]

[[27 5]
[10 28]]

[[27 1]
[2 16]]

AUC 0.8615 0.9973 0.8909 0.9818 0.9465 0.9876 0.8602 0.9454

Figure 3. Comparison of DDS profiles between TFBS-IR and TFBS-DR for TFs Cra (A), GalR (B), GalS (C), GntR (D), AgaR (E), OmpR (F), PhoB (G), and PhoP
(H). Black dots indicate the TFBS positions. DDS values for each TFBS sequence are depicted in gray, with the average value shown by black lines. The
sequence representations below each graph were generated from the TFBS region (between the dotted lines) using the WebLogo server.

value profile of the 32 PhoB TFBS (Fig. 3G) and 40 PhoP TFBS
sequences did not reveal any well-conserved nucleotides, peaks,
or valleys (Fig. 3H).

The translation of nucleotide sequences into thermodynamic
values, specifically DDS, presents an unexplored domain in the
context of ML models for predicting TFBS. To our knowledge, there
are no previous studies where DDS has been applied to bind-
ing site prediction. Given the absence of prior research utilizing

parameters like DDS, we acknowledge the potential significance
of these thermodynamic features in our analysis.

Random Forest accurately predict TFBS
After initial screening to establish the most appropriate descrip-
tor to convert the sequences into input data for the model, we
conducted an assessment of various ML algorithms to evaluate
their performance in classifying sequences as TFBS or non-TFBS.
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Figure 4. Comparative analysis of TFBS prediction algorithms into different sequence sizes. The performance of each algorithm is shown by lines:
Random Forest (blue line), SGD (dark purple line), SVC (pink line), Adaboost (orange line), Gradboost (black line), DT (brown line), and XGB (purple line).

The negative set, comprising sequences that do not correspond
to TFBS, was generated by randomly sorting TFBS sequences.
However, it is well-known that one TF can recognize various DNA
binding sites [2, 50], and these TFBS may not have the same
number of nucleotides, leading to variations in their sizes. The
majority of TFBS sequences presents in our dataset comprises 8
to 20 bp, encompassing 92.93% of our dataset. Conversely, shorter
(4 to 7 bp) and longer (21 to 163 bp) TFBS constitute only 0.61 and
6.46% of the dataset, respectively. Figure 4 presents the validation
results for each ML model (for more details see Table S4 in
Supporting Information).

Figure 4A illustrates the accuracy values achieved by various
algorithms across diverse datasets. Notably, the RF, XGBoost, and
Gradient Boosting models exhibited higher accuracy compared
to the others. Ensemble methods consistently exhibit superior
performance across a range of prediction scenarios within
biological contexts [51]. The ensemble methods mentioned
achieved an optimal balance between bias and variance, resulting
in more robust and generalizable models compared to simpler
models like SGD and SVC. Additionally, ensemble models are
capable of capturing non-linear relationships and complex
interdependencies in data, rendering them better suited for
addressing complex prediction problems compared to DT
and linear models such as SGD and SVC. Precision, recall,
and F1-score, as illustrated in Fig. 4B–D, further emphasize
the effectiveness of our ensemble models in predicting TFBS.
Among the models, the RF model stands out, consistently
achieving an AUC above 80% across all datasets (Table 2),
covering TFBS sequences ranging from 8 to 20 bp. These results
suggest that our model has a high predictive accuracy in

Table 2. AUC obtained for the ML models. RF, Random Forest;
SGD, stochastic gradient descent; SVC, support vector classifier;
GXB, gradient boost; Ada, Adaboost; Grad, Gradboost; DT,
Decision Tree.

bp RF SGD SVC XGB Ada Grad DT

8 0.98 0.96 0.96 0.97 0.97 0.97 0.94
9 0.80 0.74 0.77 0.79 0.80 0.80 0.64
10 0.94 0.86 0.91 0.95 0.93 0.97 0.84
11 0.86 0.79 0.81 0.87 0.79 0.84 0.74
12 0.87 0.65 0.70 0.89 0.86 0.88 0.66
13 0.91 0.79 0.83 0.91 0.90 0.91 0.75
14 0.88 0.79 0.85 0.90 0.88 0.90 0.73
15 0.89 0.79 0.85 0.87 0.83 0.88 0.67
16 0.89 0.80 0.83 0.87 0.87 0.88 0.63
17 0.90 0.81 0.88 0.91 0.88 0.89 0.68
18 0.89 0.81 0.86 0.91 0.87 0.92 0.78
19 0.96 0.66 0.94 0.94 0.96 0.92 0.67
20 0.95 0.92 0.94 0.94 0.94 0.95 0.83

distinguishing TFBS from random sequences, highlighting its
potential as an important tool for identifying new bacterial
TFBS.

Assessment of model generalizability through
external validation
To further assess the predictive power and applicability of our
models, we performed external validation using bacterial TFBS
sequences obtained from the Prodoric database [52]. Given that
our models are sequence-length dependent, we stratified the
Prodoric dataset by sequence length, selecting TFBS with length
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Table 3. External validation results using the Prodoric database
with RF models for TFBS and nonTFBS across 13, 14, and 15 bp
sequences.

Prec REC F1-score Dataset

Model 13 bp TFBS 0.94 0.73 0.82 369
nonTFBS 0.53 0.88 0.66 129

Model 14 bp TFBS 0.88 0.60 0.71 275
nonTFBS 0.45 0.80 0.58 113

Model 15 bp TFBS 0.90 0.59 0.72 441
nonTFBS 0.40 0.80 0.53 148

sizes of 13, 14, and 15 bp. We ensured that none of the sequences
in the external validation set overlapped with those used in the
training phase, maintaining the independence of the validation
data. For external validation, we used 369, 275, and 441 TFBS with
13, 14, and 15 bp, respectively. To generate a negative dataset
(nonTFBS), we created random nucleotide sequences matching
the length of the TFBS sequences.

The external validation results are presented in Table 3.
Notably, the 13 bp model exhibited the highest performance,
achieving a precision of 0.94, recall of 0.73, and an F1-score of
0.82 for TFBS predictions. This strong performance indicates that
the 13 bp model is highly reliable in identifying true TFBS, with
a favorable balance between precision and recall. In contrast,
the performance metrics for nonTFBS predictions were lower,
with a precision of 0.53, recall of 0.88, and an F1-score of 0.66.
This suggests that the model struggles with nonTFBS predictions,
likely due to the randomness of the negative dataset, which may
lack discernible patterns for the model to generalize effectively.

The 14 and 15 bp models showed a decline in predictive per-
formance compared to the 13 bp model. For the 14 bp model,
the precision, recall, and F1-score for TFBS were 0.88, 0.60, and
0.71, respectively. Similarly, the 15 bp model achieved a precision
of 0.90, recall of 0.59, and an F1-score of 0.72. Furthermore, the
nonTFBS predictions for both the 14 and 15 bp models exhibited
further declines in accuracy, with precision values of 0.45 and
0.40, and F1-scores of 0.58 and 0.53, respectively. These results are
consistent with the hypothesis that randomly generated nonTFBS
sequences, lacking biological relevance, present a challenge for
the model’s generalization capabilities.

We compared our model with a recent study, who employed
ML algorithms such as RF and XGBoost for TFBS prediction using
S. cerevisiae PBM data [27]. However, due to the lack of publicly
available models and datasets from their work, we focused on
comparing the performance metrics reported in their paper with
those achieved in our models (Table S5). Our results demonstrate
that both our RF and XGBoost models, particularly those trained
on sequences of 11 and 13 bp lengths, outperform the models
by previous study in terms of recall while achieving comparable
precision.

These findings confirm the robustness of our models in identi-
fying TFBS across various sequence lengths. However, the variabil-
ity in nonTFBS predictions highlights an area for future improve-
ment. Refining the generation of nonTFBS sequences to include
more biologically relevant negative examples, rather than relying
on purely random sequences, may improve the model’s ability
to distinguish between TFBS and nonTFBS regions with greater
accuracy.

Model interpretability using DNA duplex stability
SHAP has emerged as a powerful tool for understanding the con-
tributions of individual features to ML models. By decomposing

the model’s predictions into contributions from each input fea-
ture, SHAP enables us to quantify the impact of specific bp on the
model’s decision-making process. We consider that the search for
the interpretability of the DDS values used as input data for the
model can help in understanding the functional role of specific
motifs related to protein-DNA interaction. DNA sequences are
characterized by complex dependencies between adjacent bp and
higher-order sequence motifs [53]. These dependencies arise from
various factors, including the structural properties of DNA, such
as base stacking and hydrogen bonding, as well as the functional
constraints imposed by biological processes such as transcription,
replication, and DNA-protein interactions. Figure 5 presents the
results of the SHAP analysis, illustrating the influence of individ-
ual bp on TFBS prediction.

The importance analysis of the model reveals a significant
pattern. The most influential features for TFBS classification,
frequently involve adjacent bp, as observed for bp4 and bp5
(Fig. 5A), bp11 and bp12 (Fig. 5B), and bp8 and bp7 (Fig. 5C). This
proximity suggests a potential functional significance wherein
specific regions of DNA might play a pivotal role in molecular
recognition and interaction with proteins. This region’s impor-
tance may vary depending on the characteristics of associated
TFs families, considering factors like amino acid conservation and
the structural arrangement of the DNA binding domain (DBD)
motif. For instance, in our model for predicting 8-bp TFBS (Fig. 5D),
particular attention is drawn to the central region, comprising bp4
and bp6. This focus on the central region underscores its potential
role as a key determinant in TFBS classification, suggesting that
interactions within this segment may hold crucial information for
understanding TF binding specificity and regulatory function.

These results reveal that the use of DDS values to represent
TFBS can provide a valuable tool for elucidating the intricate
dynamics of protein-DNA interactions. FadR, a well-studied mem-
ber of the GntR family of TFs, serves as an illustrative example in
this regard (Fig. 6).

We obtained the structure of the crystallized protein-DNA
complex (Fig. 6A) from the Protein Data Bank, under PDB code id
1H9T [54]. By converting TFBS sequences into DDS values (Fig. 6B),
we were able to capture a phenomenon related to the symmetry of
TFBS, linked by a symmetric and opposite region forming between
the bp of position 8-11, similar to a palindrome typical of several
TFBS (see Fig. S3 in Supporting Information). We also observe
two well-conserved regions, comprising the bp of position 2-7 and
12-17. The feature importance analysis (Fig. 6C) underscores the
significance of conserved bp in predicting TFBS, with bp11 being
the exception. Notably, bp7, comprised of nucleotides G7 and T8,
stands out due to its crucial interactions with amino acids R49,
R45, and S7 in both the A and B chains of the FadR dimer. Another
noteworthy feature highlighted by the SHAP analysis is bp10,
where a significant interaction between the C/G10 nucleotide
and the T46 amino acid of both protein chains was observed.
Korostelev et al. noted that conserved positions likely contribute
to initial DNA binding, while correlated positions fine-tune inter-
actions with specific sites [55]. Furthermore, Yeo et al. performed
structural studies on Bacillus halodurans FadR [56], highlighting
critical interactions between bp equivalent to bp6-7 and bp9-10
in Fig. 6B.

Although further studies need to be conducted to explore
additional families of transcriptional factors, a notable correla-
tion emerges between DDS values and experimentally observed
DNA-protein contacts. Korostelev et al. used several crystal struc-
tures of related TFs in the DNA-bound form and demonstrated
a significant correlation between specific pairs and contacting
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Figure 5. SHAP analysis (stacked bar chart) of DDS values alongside sequence LOGO plots for four different sequence lengths: A (20 bp), B (18 bp), C (14
bp), and D (8 bp). The SHAP analysis highlights the impact of the bp of TFBS (black) and nonTFBS (gray) on the model’s prediction, while the sequence
logos illustrate conserved nucleotide residues within these regions.

positions. They suggested that such correlations, when combined
with sequence data, could become powerful tools for studying the
evolution of TF families and the coevolution of TF-DNA interac-
tions [55]. This observation underscores the promise of DDS-based
approaches in predicting TFBS and characterizing protein-DNA
interactions. Several studies have proposed that the conservation
of bp within a motif correlates significantly with the number of
contacts they establish with the bound TF [55, 57, 58]. Conse-
quently, structural analyses of TFBS have been employed to pre-
dict amino acid—base contacts for TFs, offering valuable insights
into protein-DNA interactions that warrant further experimental
validation [59–63].

The composition of nucleotides can differentiate
a TFBS-DR from a TFBS-IR
After successfully predicting TFBS, we developed a model capable
of distinguishing TFBS-DR from TFBS-IR, highlighting the implica-
tions of this distinction for understanding gene regulatory dynam-
ics. By elucidating the nucleotide-level characteristics that define
these regulatory elements, we aim to shed light on the nuanced
interplay between sequence structure and function in the con-
text of transcriptional regulation. To achieve this, we employed
the RF algorithm, chosen for its superior performance in TFBS
classification, particularly with a subset of sequences consisting
of 15 bp (see Table S6). We further subdivided the classification
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Figure 6. Correlation between the structure of the TFBS-FadR complex and DDS values. (A) Depiction of intermolecular interactions between TFBS
and FadR observed in the crystallographic structure (PDB code: 1H9T). The dotted lines indicate the hydrogen bond interactions as visualized using the
PyMOL software. (B) Conversion of TFBS, chains C and D, into DDS values. (C) Assessment of the impact of nucleotide bp from chains C and D on the
TFBS prediction model.

task into three distinct categories: DR versus non-DR, IR versus
non-IR, and DR versus IR. This segmentation allowed us to assess
whether the data quantity imbalance between the TFBS-IR (738
sequences) and TFBS-DR (316 sequences) classes could lead to
overfitting (Table 4).

The findings reveal that distinguishing a TFBS-DR from a ran-
dom sequence yields an accuracy of 0.858, whereas the accuracy
significantly increases to 0.966 when classifying a TFBS-IR from
nonTFBS-IR sequence. This disparity can be attributed to the
prevalence of symmetry of IR in relation to DR, thus leading to
a more characteristic and distinguishable signal from random
sequences. Additionally, the model developed for TFBS-DR ver-
sus TFBS-IR classification achieved an accuracy of 0.891 and a

precision of 0.855. Notably, the generated models demonstrate
robustness against overfitting, as indicated by the results of the
K-fold cross-validation test, which reveal no discernible pattern
of overfitting.

Conclusion
In recent years, the exponential growth of biological data available
in databases has paved the way for the development of efficient
and robust ML-based models. Among these, models for predicting
TFBS hold significant relevance for understanding gene regula-
tion. While existing models often rely on the OHE strategy for
translating nucleotide sequences, which lacks inherent biological
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Table 4. Validation of the ML model for classifying TFBS-DR and
TFBS-IR sequences.

DR vs nonDR IR vs nonIR IR vs DR

Dataset 316 DR 738 IR 738 IR
316 non-DR 738 non-IR 316 DR

ACC 0.858 0.966 0.891
Prec 0.855 0.966 0.855
Rec 0.855 0.967 0.881
F1-Score 0.855 0.966 0.866
K-fold
cross
validation

[0.890, 0.812,
0.936, 0.888,
0.905, 0.968,
0.905, 0.936,
0.936, 0.905]

[0.959, 0.973,
0.986, 0.973,
0.966, 0.993,
0.959, 0.979,
0.979, 0.986]

[0.896, 0.839,
0.821, 0.877,
0.876, 0.895,
0.895, 0.828,
0.857, 0.866]

or physical meaning, our work aimed to explore alternative meth-
ods. In this study, we investigated several thermodynamic and
structural parameters to convert TFBS into meaningful features
for training ML models. Our approach not only aimed at accurate
prediction but also sought to provide insights into the structural
characterization of protein-DNA complexes.

The findings demonstrated in this work point that DDS effec-
tively represented the TFBS dataset, revealing characteristic sym-
metry patterns reminiscent of palindromic TFBS. By subdividing
the dataset based on the number of nucleotides, we ensured uni-
form evaluation by various ML algorithms. Using the RF algorithm,
we achieved an average accuracy of over 82% in distinguish-
ing TFBS from random sequences. Furthermore, we developed a
model capable of differentiating TFBS into IR and DR with an
accuracy of 89%. The model trained on sequences with a length
of 13 bp demonstrated the best performance and is therefore the
most recommended for TFBS prediction. However, since TFBS can
vary in size and given the specific challenges associated with
different contexts, it may be necessary to conduct predictions
using models designed for various bp lengths.

These results underscore the potential of converting nucleotide
sequences into DDS values, which may provide valuable insights
into how bacterial proteins recognize DNA structures. Ongoing
studies are investigating how this approach can aid in struc-
tural characterization. Preliminary findings suggest a promising
avenue for developing models that enhance our understanding of
protein-DNA interaction sites.

Key Points

• We employed ML algorithms to predict TFBS and classify
them as DR or IR.

• We divided the set of TFBS nucleotide sequences by
size, ranging from 8 to 20 bp, and converted them into
thermodynamic data known as DDS.

• We demonstrate that the RF algorithm accurately pre-
dicts TFBS and effectively distinguishes between IR and
DR.

• Interestingly, upon converting the bp of several TFBS-IR
into DDS values, we observed a symmetric profile typ-
ical of the palindromic structure associated with these
architectures.

• We show a novel TFBS prediction model based on a DDS
characteristic that may indicate how respective proteins
interact with bp.

Supplementary data
Supplementary data are available at Briefings in Bioinformatics
online and publicly available at https://github.com/farias-ab/
TFBS-Prediction.git.
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